Cauchyscher Grenzwertsatz

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 23. März 2023 um 13:01 Uhr durch Aka (Diskussion | Beiträge) (Halbgeviertstrich, Punkt vor und nach Ref-Tag korrigiert, ISBN-Format, Kleinkram). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Der Cauchysche Grenzwertsatz wurde erstmals von dem französischen Mathematiker Augustin Louis Cauchy formuliert. Er ist ein Spezialfall des allgemeineren Satzes von Cesàro–Stolz und besagt: Aus der Konvergenz einer Zahlenfolge folgt die Konvergenz der Cesàro-Mittel der Folge gegen denselben Grenzwert. Oder: aus    folgt  .[1][2]

Verwandte Resultate und Erweiterungen

Betrachtet man statt des gewöhnlichen arithmetischen Mittels ein gewichtetes Mittel, so folgt aus der Konvergenz der ursprünglichen Folge auch die Konvergenz der gewichteten Mittel, das heißt, es gilt der folgende Satz:[1][2]

Sei eine beliebige Folge mit und eine Folge positiver Zahlen mit . Dann gilt auch: .

Für das geometrische Mittel gilt ebenfalls ein analoger Satz:[1][2]

Sei eine Folge mit , . Dann gilt auch:   .

Beweis des Cauchyschen Grenzwertsatzes

Sei beliebig und so gewählt, dass    ist für alle .
Wegen    gibt es ein    mit     für   .

Für alle folgt dann

[2]

Literatur

  • Harro Heuser: Lehrbuch der Analysis – Teil 1, 17-te Auflage, Vieweg + Teubner 2009, ISBN 978-3-8348-0777-9, S. 176–179
  • Konrad Knopp: Theorie und Anwendung der unendlichen Reihen. Springer, 5. Auflage, Berlin 1964, S. 73–79 (online)
  • Sen-Ming: Note on Cauchy's Limit Theorem. In: The American Mathematical Monthly, Band 57, Nr. 1 (Jan., 1950), S. 28–31 (JSTOR)

Einzelnachweise

  1. a b c Guido Walz (Hrsg.): Lexikon der Mathematik - Band 1. Springer/Spektrum, 2-te Auflage 2017, S. 293 (online)
  2. a b c d Harro Heuser: Lehrbuch der Analysis – Teil 1, 17-te Auflage, Vieweg + Teubner 2009, ISBN 978-3-8348-0777-9, S. 176-179