Abgasreinigung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Als Abgasreinigung bezeichnet man die Abscheidung von Luftverunreinigungen aus Abgasen zum Umweltschutz, die trotz Verwendung von Abgasfiltern nicht vollständig ausgeschlossen werden können. Zur Entfernung der festen Bestandteile im Abgas werden die Verfahren der Entstaubung angewandt. Für gasförmige und flüssige bzw. tropfenförmige Stoffe können je nach den chemischen und physikalischen Eigenschaften der Stoffe im Wesentlichen drei Verfahren eingesetzt werden:

Abgasreinigung und Abluftreinigung[Bearbeiten | Quelltext bearbeiten]

Unter Abgas- oder Abluftreinigung versteht man die Entfernung schädlicher Komponenten aus der Gasphase. Die Verwendung der Begriffe Abgas und Abluft erfolgt dabei uneinheitlich. Während in der TA Luft nur dann von Abluft die Rede ist, wenn es um das Thema Tierhaltung geht,[1] so wird in der Standardisierung häufig auf Gaszusammensetzung und -herkunft verwiesen: Mit Schadstoffen belastete Gase, die aus Räumen stammen, wo sich Menschen dauerhaft aufhalten können, werden als Abluft bezeichnet.[2] Ansonsten handelt es sich um ein Abgas.

Abgasreinigungsverfahren[Bearbeiten | Quelltext bearbeiten]

Absorption[Bearbeiten | Quelltext bearbeiten]

Als Absorptionsmittel wird wegen seiner geringen Kosten Wasser bevorzugt. Reicht die Absorptionsfähigkeit von Wasser nicht aus, muss die Absorption durch chemische Umsetzung mit Zusätzen (Chemisorption) ergänzt werden. Insbesondere wasserlösliche Verunreinigungen werden aus dem Gas sehr gut herausgelöst. Durch die Absorption von Substanzen aus dem Gas wird die Waschflüssigkeit evtl. verunreinigt. Oft handelt es sich bei den aufgenommenen Stoffen um saure oder basische Chemikalien, wie z. B. Chlorwasserstoff, Stickoxide oder Ammoniak. Durch eine im Wäscher integrierte Neutralisationseinheit lässt sich das Abwasser auf einem neutralen pH-Wert halten. Zudem ist leicht sauer eingestellte Waschflüssigkeit für basische Gaskomponenten effektiver, und leicht basische Waschflüssigkeit ist zur Entfernung sauerer Gaskomponenten wirkungsvoller.[3]

Absorber können als Sprühdüsenwäscher, Wirbelstromnassabscheider, Venturiwäscher oder Fallfilm- Filter aufgebaut sein und erreichen hohe Absorptionsgrade. Andere Absorptionsmittel sind Öle (Ölwäsche) für organische Substanzen. Nachteile der Absorptionsverfahren sind die entstehenden Abwässer oder Deponierprobleme. Darüber hinaus können bei der Absorption Aerosole entstehen, die, damit sie nicht in die nachfolgenden Reinigungsstufen verschleppt oder gar aus dem Abgasreinigungssystem ausgetragen werden, mittels Aerosolabscheider abgetrennt werden müssen.[4]

Eine Sonderstellung nimmt die Rauchgasentschwefelung ein. Bei diesem Verfahren handelt es sich um einen Methode zur Entfernung von Schwefeldioxid aus Abgasen durch Calciumhydroxid als Absorptionsmittel. Dadurch entsteht REA-Gips, der in der Bauindustrie Verwendung finden kann.

Adsorption[Bearbeiten | Quelltext bearbeiten]

Adsorptionsverfahren finden sowohl bei der Reinigung industrieller Abgase wie auch in der Haustechnik, beispielsweise in Dunstabzugshauben, Anwendung. Durch Anlagerung an die innere Oberfläche poröser Adsorbenzien werden Luftschadstoffe, insbesondere Kohlenwasserstoffe, aus dem zu reinigenden Abgas entfernt.[5] Die eingesetzten Apparate lassen sich in Festbett-, Bewegtbett-, Rotor-, Wirbelbett- und Flugstrom-Adsorber unterscheiden. In mehrstufigen Abgasreinigungsanlagen werden Adsorber als finale Reinigungsstufe, als sogenannte Polizeifilter, eingesetzt.[6]

Als problematisch können sich große Konzentrationsschwankungen der Luftschadstoffe erweisen, wenn aufgrund niedriger Eingangskonzentration im bereits beladenen Adsorbens eine Desorption stattfindet und Luftschadstoffe in unerwünschter Konzentration den Adsorber verlassen. Sind solche Fälle zu erwarten, so ist der Adsorber größer zu dimensionieren oder mit dem Adsorbens ist entsprechend umzugehen. Gebrauchte Adsorbenzien sind zu regenerieren oder zu entsorgen.[7]

Katalytische Verfahren[Bearbeiten | Quelltext bearbeiten]

Die katalytische Abgasreinigung kommt sowohl in industriellen Großanlagen als auch in jedem modernen PKW zum Einsatz. Der Vorteil ist der vergleichsweise geringe Energieaufwand, der für die chemische Reaktion der Abgasreinigung notwendig ist. Nachteilig sind die z. T. höheren Investitions- und Wartungskosten der Katalysatoren im Gegensatz zu anderen Verfahren, sowie die Empfindlichkeit der Katalysatoren gegenüber Verunreinigungen und sogenannten Katalysatorgiften. Da bei technisch relevanten Prozessen die genaue Zusammensetzung der Abluft oft unbekannt ist, und eventuelle Katalysatorgifte nicht ausgeschlossen werden können, verzichtet man in solchen Fällen auf eine katalytische Oxidation.
Als Beispiel für die katalytische Abgasreinigung sei an dieser Stelle der Dreiwegekatalysator in PKWs mit Otto-Motor erwähnt. Er besteht aus einem keramischen Grundkörper der mit Edelmetallen wie zum Beispiel Platin, Rhodium u. a. beschichtet ist. An der Oberfläche laufen die chemischen Reaktionen der Abgasreinigung stark beschleunigt und bei geringer Energiezufuhr ab. Das im Abgas enthaltene Kohlenmonoxid (CO) wird zu Kohlendioxid (CO2) oxidiert, die Stickoxide (NOx) werden zu Stickstoff (N2) reduziert. Früher wurden den Kraftstoffen bleiorganische Verbindungen wie Tetraethylblei als Antiklopfmittel zugesetzt. Das Blei setzte sich auf der Oberfläche des Katalysators ab und verunreinigte ihn so stark, dass seine Wirksamkeit stark eingeschränkt wurde oder ganz zum Erliegen kam. Man spricht dann auch von einer „Vergiftung“ des Katalysators. Aus diesem Grund werden in modernen Kraftstoffen keine Bleiverbindungen als Antiklopfmittel mehr eingesetzt.

Siehe auch: Abgasrückführung

Nichtkatalytisch-chemische Verfahren[Bearbeiten | Quelltext bearbeiten]

Zu den nichtkatalytisch-chemischen Verfahren zählen solche Verfahren, bei denen schädliche Abgasbestandteile durch chemische Reaktionen mit speziell zugegebenen Chemikalien dazu führen, dass die Schadstoffe in eine weniger schädliche Form überführt werden. Ein in der Industrie häufig eingesetztes Verfahren ist das sogenannte SNCR-Verfahren (selective non-catalytic reduction). Bei dieser Form der Entstickung von Abgasen werden alle Stickoxide (NOx) durch Ammoniak (NH3) zu elementarem Stickstoff (N2) reduziert. Das Ammoniak wird dazu direkt in die Abgasleitung bei einer Temperatur von 900 bis 1000 °C eingedüst. Die eingesetzte Menge an Ammoniak ist allerdings genau auf die Menge an Stickoxiden abzustimmen da sich ansonsten Ammoniakreste im Abgas befinden können, die ebenfalls entfernt werden müssten.

Staubminderungsverfahren[Bearbeiten | Quelltext bearbeiten]

Zur Entfernung von Partikeln (Entstaubung) aus einem Abgas stehen unterschiedlichste Verfahren zur Verfügung, die in Abhängigkeit von der Abgaszusammensetzung und der Reinigungsaufgabe eingesetzt werden. Massenkraftabscheider, wie Schwerkraft- oder Fliehkraftabscheider, zeichnen sich durch geringe Investitions- und Betriebskosten sowie große Zuverlässigkeit aus.[8] Da die für die Abscheidung wirksamen Kräfte proportional zur Partikelmasse sind,[9] werden Massenkraftabscheider bevorzugt zur Grobentstaubung eingesetzt. Als Weiterentwicklung der Massenkraftabscheider können Gaswäscher verstanden werden, indem die resultierende Partikelmasse durch Anlagerung an Wassertröpfchen deutlich erhöht wird.[10] Gaswäscher sind in der Lage, in einem Verfahrensschritt staub- und gasförmige Schadstoffe aus einem Abgas zu entfernen.[11] Ein weiterer Vorteil ist, dass sie in explosionsfähiger Atmosphäre eingesetzt werden können. Nachteilig können die Entstehung von Schlämmen[12] und eine Aerosolbildung durch die Waschflüssigkeit[13] sein.

Filternde Abscheider werden in Oberflächenfilter und Tiefenfilter unterschieden. Es können aber auch weitere Unterscheidungsmerkmale wie Art des Filtermediums und Konfektionierungsmerkmale herangezogen werden. Bei Oberflächenfiltern, auch Abreinigungsfilter genannt, entsteht während des Filtrationsvorgangs ein Filterkuchen, der einen wesentlich Anteil an der Reinigungsleistung des Filters hat und der in wiederkehrenden Abständen abgereinigt werden muss.[14] Tiefenfilter (Speicherfilter) ohne gewünschte Kuchenbildung werden im Gegensatz zu Oberflächenfiltern zur Abscheidung von partikelförmigen Verunreinigungen der Zu-, Ab- und Umluft von Lüftungs- und Klimaanlagen sowie zur Reinigung von Prozessluft eingesetzt.[15]

In Elektrofiltern werden Gasionen erzeugt, die eine elektrische Aufladung der abzuscheidenden Partikel bewirken. Die aufgeladenen Partikel werden an einer sogenannten Niederschlagselektrode abgeschieden. Die Niederschlagselektrode muss in regelmäßigen Abständen gereinigt und der Staub ausgetragen werden.[16] Aufgrund der Unabhängigkeit von Partikelmasse und -durchmesser weisen sie kein charakteristisches Abscheideminimum auf.

Im Allgemeinen lassen sich höhere Abscheidegrade mit Oberflächenfiltern und Elektrofiltern erzielen. Geringere Abscheidegrade werden mit Gaswäschern und Massenkraftabscheidern erreicht.

Nichtthermisches Plasma[Bearbeiten | Quelltext bearbeiten]

Nichtthermisches Plasma (NTP) wird zur Geruchseliminierung und zum Abbau organischer Kohlenwasserstoffe in der Abluft verwendet.[17] Die Abluftreinigung mit dem NTP-Verfahren erfolgt durch Anregung in einem elektrischen Feld zwischen Elektroden und dielektrischer Barriere. NTP-Verfahren werden sowohl als Direktverfahren als auch als Injektionsverfahren eingesetzt.[18] Bei den Direktverfahren durchläuft das Abgas das elektrische Feld und es erfolgt eine direkte Anregung der Schadstoffmoleküle, um deren Reaktionsfreudigkeit zu erhöhen. Beim Injektionsverfahren wird ein angeregter Luftstrom, der das elektrische Feld durchlaufen hat, in den Abgasstrom eingeleitet. Im Idealfall werden die Schadstoffmoleküle zu Wasser und Kohlenstoffdioxid umgesetzt.

Zu beachten ist, dass durch die elektrische Anregung Sekundäremissionen, wie z. B. Ozon und Stickstoffoxide, entstehen können.[19] NTP-Anlagen werden häufig in Kombination mit einer weiteren Verfahrensstufe (z. B. Adsorption, Absorption, Katalysator) ausgeführt.

Nachverbrennung[Bearbeiten | Quelltext bearbeiten]

Die Nachverbrennung von Abgasen hat den Hauptzweck, deren Gehalt an Kohlenwasserstoffen zu mindern. Dazu wird das Abgas so weit erhitzt, dass Kohlenwasserstoffe im Idealfall zu Kohlenstoffdioxid und Wasser oxidiert werden. Bei den Nachverbrennungseinrichtungen wird zwischen Anlagen zur

unterschieden. Die aufgeführten Verfahren unterscheiden sich unter anderem in der Prozessführung (kontinuierlicher bzw. diskontinuierlicher Betrieb) und den erreichten Temperaturen. In der Regel ist ein Einsatz von Zusatzbrennstoffen notwendig. Sofern die Konzentration an Kohlenwasserstoffen im Abgas groß genug ist, kann auf Zusatzbrennstoffe verzichtet werden.[20]

Bei der katalytischen wie auch der regenerativen Nachverbrennung ist wegen niedrigerer Prozesstemperaturen und der Art der Prozessführung der Bedarf an Zusatzbrennstoff geringer, jedoch weisen beide Verfahren einen höheren Platzbedarf auf und sind anfälliger gegenüber partikelförmigen Verunreinigungen. Beim Katalysatorbetrieb können zudem als Katalysatorgift wirksame Stoffe im Abgas auftreten.[21]

Biologische Abgasreinigung[Bearbeiten | Quelltext bearbeiten]

Bei der biologischen Abgasreinigung (biological waste gas purification) werden organische Abgaskomponenten von Mikroorganismen verstoffwechselt und als Energieträger oder zum Aufbau von Zellsubstanz verwendet. In der Regel handelt es sich um aerobe Bakterien, wie z. B. Pseudomonas, Streptomyces oder Xanthobacter,[22] die im Idealfall die Abgasinhaltsstoffe zu Kohlenstoffdioxid und Wasser umwandeln. Aber auch Pilze wie Aspergillus oder Penicilium gehören zu den Mikroorganismen, die bei der biologischen Abgasreinigung vorkommen.[22]

Allen biologischen Verfahren ist gemein, dass der abzuscheidende Abgasinhaltsstoff zuerst in Lösung gebracht werden muss, um im Anschluss mikrobiologisch abgebaut zu werden. Für die Anwendung dieser Abgasreinigungsverfahren müssen demnach zwei Voraussetzungen erfüllt sein:

  1. Der Abgasinhaltsstoff muss wasserlöslich sein (die Anwesenheit von Wasser ist für die biologische Abgasreinigung zwingend notwendig).
  2. Der Abgasinhaltsstoff muss mikrobiologisch abbaubar sein.[23]

Die Mikroorganismen sind je nach Verfahren auf einer Oberfläche fixiert oder in einer Lösung suspendiert. Während ihr Kohlenstoffbedarf – eventuell auch der Bedarf an Schwefel und Stickstoff – durch die Abgasinhaltsstoffe gedeckt wird, müssen andere Substanzen, wie z. B. Phosphor und Spurenelemente, den Mikroorganismen auf andere Art und Weise zugeführt werden. Biologische Verfahren werden dann eingesetzt, wenn

  • der Abgasinhaltsstoff nicht zurückgewonnen werden soll,
  • keine großen Änderungen der Abgaszusammensetzung zu erwarten sind,
  • die Abgastemperaturen sich in Bereichen bewegen, die für die Mikroorganismen verträglich sind, und
  • keine für die Mikroorganismen toxisch wirkenden Abgaskomponenten zu erwarten sind.

Verfahren der biologischen Abgasreinigung[Bearbeiten | Quelltext bearbeiten]

Folgende Verfahren der biologischen Abgasreinigung werden in der Industrie eingesetzt:

Biofilter
Die ersten Biofilter wurden bereits Mitte des letzten Jahrhunderts patentiert und angewendet. Dabei wird ein organisches Trägermaterial wie z. B. Rindenmulch oder Hackschnitzel in ein Filterbett mit ca. 1–3 m Schütthöhe gefüllt. Die Abluft durchströmt das Filterbett von unten nach oben, wobei die Schadstoffe biologisch abgebaut werden. Die Biofilter können ebenerdig gebaut oder in Modulbauweise übereinander gestapelt werden. Durch den relativen einfachen konstruktiven Aufbau stellt der Biofilter ein sehr günstiges Abluftreinigungsverfahren dar, das jedoch nur für Anwendungen in kontinuierlicher Betriebsweise mit geringer Lösemittel- oder Geruchsbeladung geeignet ist.
Biowäscher
Der Biowäscher ist ein Absorber mit in der Waschflüssigkeit suspendierten Mikroorganismen. Die Schadstoffe werden physikalisch aus dem Abgas ausgewaschen und danach in der wässrigen Phase biologisch abgebaut. Der wesentliche Abbau der Schadstoffe erfolgt im Absorbersumpf oder in einem externen Regenerierreaktor. Der Absorbersumpf reicht aus, wenn die Schadstoffe in niedriger Konzentration vorliegen und leicht abbaubar sind. Sind die absorbierten Luftschadstoffe hingegen schwer abbaubar, so bedingt die notwendige längere Verweilzeit dieser Stoffe in der wässrigen Phase einen Regenerierreaktor.[24] Das durch den biologischen Abbau regenerierte Wäscherwasser kann zu einem Großteil im Kreislauf gefahren werden.[25] Die zum biologischen Abbau notwendigen Nährstoffe müssen der Waschflüssigkeit zugegeben werden. Biowäscher können Lösemittelkonzentrationen im Abgas bis ungefähr 1000 mg/m³ behandeln.[26]
Biorieselbettreaktor
Der Biorieselbettreaktor unterscheidet sich vom Biowäscher dadurch, dass die Mikroorganismen, welche die Schadstoffe abbauen, auf Einbauten fixiert sind. Die Abgrenzung zum Biofilter liegt darin, dass die von den Mikroorganismen besiedelten Einbauten diesen nicht als Nährsubstrat dienen und die Wasserführung im Reaktor zur Eindämmung und Vergleichmäßigung des Biofilms dient und nicht zur Verhinderung der Austrocknung. Die beladene Abluft durchströmt das inerte Trägermaterial bezogen auf die Fließrichtung der Berieselungsflüssigkeit im Kreuz, Gegen- oder Gleichstrom.[27] Die in ihr enthaltenen Schadstoffe werden von der Berieselungsflüssigkeit absorbiert und dienen den Mikroorganismen als Nährstoff. Zusätzlich notwendige Nährstoffe werden über die Berieselungsflüssigkeit zugeführt. Der Biorieselbettreaktor eignet sich sowohl zur Reinigung lösemittel- als auch geruchsbeladener Abluft mit Konzentrationen bis zu 1,5 g/m³.[28]

VDI-Richtlinien biologische Abgasreinigung[Bearbeiten | Quelltext bearbeiten]

  • Biofilter VDI 3477 (Ausgabe 11/2004)
  • Biowäscher VDI 3478 Blatt 1 (Ausgabe 03/2011)
  • Biorieselbettreaktoren VDI 3478 Blatt 2 (Ausgabe 04/2008)

Der Verein Deutscher Ingenieure, VDI, beschreibt seine Aufgaben in den vor genannten Richtlinien wie folgt: „In der Kommission Reinhaltung der Luft im VDI und DIN – Normenausschuss KRdL – erarbeiten Fachleute aus Wissenschaft, Industrie und Verwaltung in freiwilliger Selbstverantwortung VDI-Richtlinien und DIN-Normen zum Umweltschutz. Diese beschreiben den Stand der Technik bzw. Stand der Wissenschaft in der Bundesrepublik Deutschland und dienen als Entscheidungshilfen bei der Erarbeitung und Anwendung von Rechts- und Verwaltungsvorschriften. […] Die Richtlinien der Biologischen Abgasreinigung behandeln die Reinigung von Abgasströmen, die durch gas- und aerosolförmige luftfremde Stoffe verunreinigt sind. Vorwiegendes Einsatzgebiet ist die Minderung von organischen Emissionskomponenten, die mit hinreichender Geschwindigkeit biologisch abbaubar sind, sowie von Schwefelwasserstoff und Ammoniak. Der typische Anwendungsbereich umfasst Massenkonzentrationen von organischen Verbindungen bis ca. 1 g/m³. Die Verfahren dienen zur Minderung von Emissionen, die auf Grund ihres Wirkungscharakters potenziell gesundheitsgefährdend und/oder belästigend sind. […]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Abgasreinigung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz vom 24. Juli 2002 (GMBl. S. 511).
  2. VDI 3477:2004-11 Biologische Abgasreinigung; Biofilter (Biological waste gas purification; Biofilters). Beuth Verlag, Berlin. S. 12.
  3. Crystec Technology Trading GmbH: Genaue Erklärung der nassen Abgasreinigung
  4. VDI 3679 Blatt 2:2014-07 Nassabscheider; Abgasreinigung durch Absorption (Wäscher) (Wet seperators; Waste gas cleaning by absorption (Scrubbers)). Verlag, Berlin. S. 28.
  5. VDI 3674:2013-04 Abgasreinigung durch Adsorption; Prozessgas- und Abgasreinigung (Waste gas cleaning by adsorption; Process gas and waste gas cleaning). Beuth Verlag, Berlin. S. 4.
  6. VDI 3674:2013-04 Abgasreinigung durch Adsorption; Prozessgas- und Abgasreinigung. Beuth Verlag, Berlin. S. 47.
  7. VDI 3674:2013-04 Abgasreinigung durch Adsorption; Prozessgas- und Abgasreinigung. Beuth Verlag, Berlin. S. 70.
  8. Franz Joseph Dreyhaupt (Herausgeber): VDI-Lexikon Umwelttechnik. VDI-Verlag Düsseldorf, 1994, ISBN 3-18-400891-6, S. 792.
  9. VDI 3676:1999-09 Massenkraftabscheider (Inertial Separators). Beuth Verlag, Berlin. S. 8.
  10. Ekkehard Weber: Stand und Ziel der Grundlagenforschung bei der Naßentstaubung. In: Staub – Reinhalt. Luft. 29, Nr. 7, 1969, ISSN 0949-8036, S. 272–277.
  11. VDI 3679 Blatt 1:2014-07 Nassabscheider; Grundlagen, Abgasreinigung von partikelförmigen Stoffen (Wet separators; Fundamentals, waste gas cleaning of particle collections). Beuth Verlag, Berlin. S. 23.
  12. Karl Georg Schmidt: Naßwaschgeräte aus der Sicht des Betriebsmannes. In: Staub: Zeitschrift für Staubhygiene, Staubtechnik, Reinhaltung der Luft, Radioaktive Schwebestoffe. 24, Nr. 11, 1964, ISSN 0949-8036, S. 485–491.
  13. Klaus Holzer: Erfahrungen mit naßarbeitenden Entstaubern in der chemischen Industrie. In: Staub – Reinhalt. Luft. 34, Nr. 10, 1974, ISSN 0949-8036, S. 361–365.
  14. VDI 3677 Blatt 1:2010-11 Filternde Abscheider; Oberflächenfilter (Filtering separators; Surface filters). Beuth Verlag, Berlin. S. 5, 7, 9.
  15. VDI 3677 Blatt 2:2004-02 Filternde Abscheider; Tiefenfilter aus Fasern (Filtering separators; Depth fiber filters). Beuth Verlag, Berlin. S. 4.
  16. VDI 3678 Blatt 1:2011-09 Elektrofilter; Prozessgas- und Abgasreinigung (Electrostatic precipitators; Process and waste gas cleaning). Beuth Verlag, Berlin. S. 8.
  17. VDI 2441:2014-03 (Entwurf) Prozessgas- und Abgasreinigung durch Kaltplasmaverfahren - Barriere-, Koronaentladung, UV-Strahlung. Berlin: Beuth Verlag, S. 2.
  18. VDI 2441:2014-03 (Entwurf) Prozessgas- und Abgasreinigung durch Kaltplasmaverfahren - Barriere-, Koronaentladung, UV-Strahlung. Berlin: Beuth Verlag, S. 11.
  19. VDI 2441:2014-03 (Entwurf) Prozessgas- und Abgasreinigung durch Kaltplasmaverfahren - Barriere-, Koronaentladung, UV-Strahlung. Berlin: Beuth Verlag, S. 7.
  20. VDI 2442:2014-02 Abgasreinigung; Verfahren und Technik der thermischen Abgasreinigung (Waste gas cleaning; Methods of thermal waste gas cleaning). Beuth Verlag, Berlin. S. 7.
  21. VDI 3476 Blatt 2:2010-01 Abgasreinigung; Verfahren der katalytischen Abgasreinigung; Oxidative Verfahren (Waste gas cleaning; Catalytic waste gas cleaning methods; Oxidative processes). Beuth Verlag, Berlin. S. 39.
  22. a b Michael Schultes: Abgasreinigung. Springer-Verlag, 1996, ISBN 3-540-60621-1, S. 209–210.
  23. Walter Reineke, Michael Schlömann: Umweltmikrobiologie. Springer-Verlag, Berlin und Heidelberg 2015, ISBN 978-3-642-41764-1, S. 411–412.
  24. Michael Schultes: Abgasreinigung. Springer-Verlag, 1996, ISBN 3-540-60621-1, S. 218.
  25. VDI 3478 Blatt 1:2011-03 Biologische Abgasreinigung; Biowäscher (Biological waste gas purification; Bioscrubbers). Beuth Verlag, Berlin. S. 21.
  26. VDI 3478 Blatt 1:2011-03 Biologische Abgasreinigung; Biowäscher. Beuth Verlag, Berlin. S. 4.
  27. VDI 3478 Blatt 2:2008-04 Biologische Abgasreinigung; Biorieselbettreaktoren (Biological waste gas purification; Biological trickle bed-reactors). Beuth Verlag, Berlin. S. 20.
  28. VDI 3478 Blatt 2:2008-04 Biologische Abgasreinigung; Biorieselbettreaktoren. Beuth Verlag, Berlin. S. 21.