Dedekindring

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 12. November 2017 um 15:30 Uhr durch Neunundneunzigwasser (Diskussion | Beiträge) (→‎Definition). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Ein Dedekindring (nach Richard Dedekind, auch Dedekindbereich oder ZPI-Ring) ist eine Verallgemeinerung des Ringes der ganzen Zahlen. Die Anwendungen dieses Begriffes finden sich hauptsächlich in den mathematischen Teilgebieten der algebraischen Zahlentheorie und der kommutativen Algebra, besonders in der Idealtheorie.

Definition

Ein Dedekindring ist ein höchstens eindimensionaler, noetherscher, normaler Integritätsring.

Manche Autoren fordern, dass Dedekindringe eindimensional sind, wodurch Körper per Definition keine Dedekindringe sind. Dies ist jedoch nicht üblich.

Eigenschaften

  • Analog zur eindeutigen Zerlegung ganzer Zahlen in Primzahlen gilt für Dedekindringe, dass in ihnen jedes Ideal eine eindeutige Zerlegung in Primideale besitzt. Dedekindringe sind gerade diejenigen Integritätsringe, die ZPI-Ringe sind.
  • Nulldimensionale Dedekindringe sind Körper.
  • Über einem Dedekindring ist jedes vom Nullideal verschiedene gebrochene Ideal invertierbar.

Beispiele

  • Jeder Hauptidealring (und damit auch jeder diskrete Bewertungsring) ist ein Dedekindring.
  • Ist ein Hauptidealring, und eine endliche Erweiterung seines Quotientenkörpers, so ist der ganze Abschluss von in ein Dedekindring. Insbesondere gilt das für Ganzheitsringe in Zahlkörpern, also beispielsweise
  • Lokalisierungen von Dedekindringen sind wieder Dedekindringe.

Keine Dedekindringe sind:

  • (zweidimensional),
  • (nicht normal),
  • und (keine Integritätsringe).

Literatur