Filter (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

In der Mathematik ist ein Filter eine nichtleere nach unten gerichtete Oberhalb-Menge innerhalb einer umgebenden halbgeordneten Menge. Der Begriff des Filters geht auf den französischen Mathematiker Henri Cartan[1] zurück.

Anschaulich betrachtet enthält ein Filter Elemente, die zu groß sind, als dass sie den Filter passieren könnten. Ist x ein Filterelement, so ist auch jedes in der gegebenen Ordnungsrelation größere Element y ein Filterelement, und je zwei Filterelemente x und y haben einen gemeinsamen Kern z, der selbst schon zu groß ist, als dass er den Filter passieren könnte.

Filter in der umgekehrten Halbordnung heißen Ideale der Ordnung oder Ordnungsideale.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

Filter treten in der Theorie der Ordnungen und Verbände auf. Ein wichtiger Spezialfall sind Mengenfilter, d. h. Filter in der durch die Mengeninklusion halbgeordneten Potenzmenge einer Menge. Mengenfilter werden besonders in der Topologie verwendet und erlauben dort die Verallgemeinerung des Begriffs der Folge für topologische Räume ohne abzählbare Umgebungsbasis. So bildet das System der Umgebungen eines Punktes in einem topologischen Raum einen speziellen Filter, den Umgebungsfilter. Umgebungsfilter können in Räumen, die kein Abzählbarkeitsaxiom erfüllen, zur Definition von Netzen verwendet werden, die die Rolle der Folgen aus der elementaren Analysis teilweise übernehmen. Man fasst dazu einen Filter als gerichtete Menge auf und betrachtet Netze auf dieser gerichteten Menge.

Mit einem Ultrafilter (der kein Hauptfilter ist) auf den natürlichen Zahlen lassen sich die hyperreellen Zahlen der Nichtstandardanalysis konstruieren. Allerdings wird die Existenz solcher Filter selbst nur durch das Auswahlaxiom – also nicht konstruktiv – gesichert.

Allgemeine Definitionen[Bearbeiten | Quelltext bearbeiten]

Eine nichtleere Teilmenge einer halbgeordneten Menge heißt Filter, wenn folgende Bedingungen erfüllt sind:

  • ist eine Oberhalb-Menge:
(D. h. alle (mit in Relation stehenden) Elemente, die größer als sind, sind Teil des Filters.)
  • ist nach unten gerichtet: und
(D. h.  ist bzgl. der Umkehrrelation der betrachteten Halbordnung gerichtet.)

Ein Filter heißt echter Filter, wenn er nicht ganz (also ungleich) ist.

Jeder Filter auf einer halbgeordneten Menge ist Element der Potenzmenge von . Die Menge der auf derselben halbgeordneten Menge definierten Filter wird durch die Inklusionsrelation ihrerseits halbgeordnet. Sind und Filter auf derselben halbgeordneten Menge , so heißt feiner als gröber als wenn . Ein maximal feiner echter Filter heißt Ultrafilter.

Filter in Verbänden[Bearbeiten | Quelltext bearbeiten]

Während diese Definition von Filter die allgemeinste für beliebige halbgeordnete Mengen ist, wurden Filter ursprünglich für Verbände definiert. In diesem Spezialfall ist ein Filter eine nichtleere Teilmenge des Verbandes , die eine Oberhalb-Menge ist und abgeschlossen unter endlichen Infima, d. h. für alle ist auch .

Hauptfilter[Bearbeiten | Quelltext bearbeiten]

Der kleinste Filter, der ein vorgegebenes Element enthält, ist . Filter dieser Form heißen Hauptfilter, und ein Hauptelement des Filters. Der zu gehörende Hauptfilter wird als geschrieben.

Primfilter[Bearbeiten | Quelltext bearbeiten]

Ein echter Filter in einem Verband mit der Zusatzeigenschaft

heißt Primfilter.

Ideale[Bearbeiten | Quelltext bearbeiten]

Betrachtet man in einer halbgeordneten Menge die Umkehrrelation , so ist auch wieder eine halbgeordnete Menge, ebenso erhält man aus einem (distributiven) Verband durch Vertauschen der beiden Verbandsverknüpfungen Supremum und Infimum wieder einen (distributiven) Verband. Sind in ein kleinstes Element 0 und ein größtes Element 1 vorhanden, so werden sie ebenfalls vertauscht. In allen genannten Fällen wird die so durch Dualisierung entstehende Struktur als notiert.

Ein Filter in heißt ein Ordnungsideal oder auch kurz Ideal in .

Beispiel[Bearbeiten | Quelltext bearbeiten]

Wir betrachten in der sogenannten punktierten komplexen Ebene die Teilmengen für der (offenen) Strahlen aus der Null (kurz: Nullstrahlen). Auf definieren wir nun eine Halbordnung , indem wir als kleiner-gleich betrachten, falls und auf demselben Strahl liegen und betraglich kleiner-gleich ist. D. h.

für .

In der halbgeordneten Menge sind nun alle Filter gegeben durch die Nullstrahlen und deren offene und abgeschlossene Teilstrahlen

für alle mit Jeder dieser Filter ist echt. Außerdem folgt aus , dass feiner feiner feiner ; insbesondere ist ein maximal-feiner echter Filter und damit ein Ultrafilter. Für jede komplexe Zahl ist der abgeschlossene Strahl ihr Hauptfilter mit als (einzigem) Hauptelement.

Die Ordnungsideale in entsprechen den fehlenden Strahlenabschnitten zwischen der Null und dem Beginn jedes Teilstrahls. Ist der Teilstrahl offen, enthält er also nicht seinen Aufpunkt, so fehlt auch im entsprechenden Ordnungsideal der Aufpunkt – analog ist er im abgeschlossenen Fall in Teilstrahl und Ideal jeweils enthalten. (Filter und Ordnungsideal sind also nicht disjunkt!) Aus dem Nullstrahl ergibt sich kein entsprechendes Ordnungsideal, da der „fehlende“ Strahlenabschnitt durch die leere Menge gegeben wäre (die kein Filter sein kann). Die Ideale haben also die Form:

und

für alle und .

Mengenfilter[Bearbeiten | Quelltext bearbeiten]

Definition[Bearbeiten | Quelltext bearbeiten]

Ein wichtiger Spezialfall eines Filters – vor allem in der Topologie – sind Mengenfilter. Man geht in diesem Fall von der durch die Mengeninklusion halbgeordneten Potenzmenge einer beliebigen nichtleeren Mengen aus. Eine echte Teilmenge ist genau dann ein Mengenfilter oder Filter, wenn folgende Eigenschaften erfüllt sind:

  1. und ,
  2. ,
  3. .

Diese Definition stimmt mit der oben gegebenen für echte Filter in Verbänden überein, da die Potenzmenge von einen Verband bildet.

Beispiele für Mengenfilter[Bearbeiten | Quelltext bearbeiten]

  • heißt der von erzeugte Hauptfilter.
  • Ist ein topologischer Raum mit Topologie , dann heißt Umgebungsfilter von .
  • Ist eine unendliche Menge, dann heißt Fréchet-Filter der Menge .
  • Ist ein nichtleeres Mengensystem von mit folgenden Eigenschaften
    1. und
    2. ,
so heißt Filterbasis in . Ein solches Mengensystem erzeugt auf natürliche Weise einen Filter
Dieser heißt der von erzeugte Filter.
  • Ist eine Abbildung zwischen zwei nichtleeren Mengen und ein Filter auf , so bezeichnet den von der Filterbasis erzeugten Filter. Dieser heißt Bildfilter von .

Anwendungen in der Topologie[Bearbeiten | Quelltext bearbeiten]

In der Topologie ersetzen Filter und Netze die dort für eine befriedigende Konvergenztheorie unzureichenden Folgen. Insbesondere die Filter als sich verengende Mengensysteme haben sich hier als gut geeignet zur Konvergenzmessung erwiesen.[2] Man erhält auf diesem Wege oft analoge Sätze zu Sätzen über Folgen in metrischen Räumen.

Ist ein topologischer Raum, heißt ein Filter genau dann konvergent gegen ein , wenn , d. h., wenn feiner ist als der Umgebungsfilter von , d. h. alle (es genügen offene) Umgebungen von enthält. Schreibweise: Von der Verfeinerung von Zerlegungen spricht man besonders im Zusammenhang mit Integrationstheorien.

So ist zum Beispiel eine Abbildung zwischen zwei topologischen Räumen genau dann stetig, wenn für jeden Filter mit gilt, dass .

In einem nicht-hausdorffschen Raum kann ein Filter gegen mehrere Punkte konvergieren. Hausdorff-Räume lassen sich sogar gerade dadurch charakterisieren, dass in ihnen kein Filter existiert, welcher gegen zwei verschiedene Punkte konvergiert.[3]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Zu den allgemeinen, ordnungs- und verbandstheoretischen Begriffsbildungen und ihren Anwendungen: Zu den Anwendungen in der mengentheoretischen Topologie:

  • Boto von Querenburg: Mengentheoretische Topologie. 3., neu bearbeitete und erweiterte Auflage. Springer, Berlin u. a. 2001, ISBN 3-540-67790-9.
  • Thorsten Camps, Stefan Kühling, Gerhard Rosenberger: Einführung in die mengentheoretische und die algebraische Topologie (= Berliner Studienreihe zur Mathematik. Bd. 15). Heldermann, Lemgo 2006, ISBN 3-88538-115-X.
  • Lutz Führer: Allgemeine Topologie mit Anwendungen. Vieweg, Braunschweig 1977, ISBN 3-528-03059-3.
  • Horst Schubert: Topologie. 4. Auflage. B. G. Teubner, Stuttgart 1975, ISBN 3-519-12200-6.

Originalarbeiten

  • Henri Cartan: Théorie des filtres. In: Comptes rendus hebdomadaires des séances de l’Académie des Sciences. Band 205, 1937, ISSN 0001-4036, S. 595–598, Digitalisat.
  • Henri Cartan: Filtres et ultrafiltres. In: Comptes rendus hebdomadaires des séances de l'Académie des Sciences. Band 205, 1937, S. 777–779, Digitalisat.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Cartan: Comptes rendus. Band 205, S. 595–598, 777–779.
  2. Führer: Allgemeine Topologie mit Anwendungen. 1977, S. 9.
  3. Schubert: Topologie. 1975, S. 44.