Jacobi-Verfahren

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel behandelt das Verfahren zum Lösen linearer Gleichungssysteme. Für das gleichnamige Verfahren zur Eigenwertberechnung, siehe Jacobi-Verfahren (Eigenwerte).

In der numerischen Mathematik ist das Jacobi-Verfahren, auch Gesamtschrittverfahren genannt, ein Algorithmus zur näherungsweisen Lösung von linearen Gleichungssystemen . Es ist, wie das Gauß-Seidel-Verfahren und das SOR-Verfahren, ein spezielles Splitting-Verfahren. Benannt ist es nach Carl Gustav Jakob Jacobi.

Entwickelt wurde das Verfahren, da das Gaußsche Eliminationsverfahren zwar eine exakte Lösungsvorschrift darstellt, sich jedoch für Rechenfehler sehr anfällig zeigt. Eine iterative Vorgehensweise hat diesen Nachteil typischerweise nicht.

Beschreibung des Verfahrens[Bearbeiten | Quelltext bearbeiten]

Gegeben ist ein lineares Gleichungssystem mit Variablen und Gleichungen.

Um dieses zu lösen, wird die -te Gleichung nach der -ten Variablen aufgelöst,

und diese Ersetzung, ausgehend von einem Startvektor , iterativ wiederholt. Als Bedingung für die Durchführbarkeit ergibt sich, dass die Diagonalelemente von Null verschieden sein müssen. Da die Berechnung einer Komponente der nächsten Näherung unabhängig von den anderen Komponenten ist, ist das Verfahren, im Gegensatz zum Gauß-Seidel-Verfahren, zur Nutzung auf Parallelrechnern geeignet.

Als Algorithmusskizze mit Iterationen und Zeilen und Spalten ergibt sich:

Gegeben Startvektor 
für  bis Erfüllung eines Abbruchkriteriums
  
  für  bis 
       für  bis 
         falls 
            ;
       ende
       ;
  ende
  
ende

Dabei wurde die willkürliche Erstbelegung des Variablenvektors als Eingangsgrößen des Algorithmus angenommen, die Näherungslösung ist die vektorielle Rückgabegröße.

Bei dünnbesetzten Matrizen reduziert sich der Aufwand des Verfahrens pro Iteration deutlich.

Beschreibung in Matrixschreibweise[Bearbeiten | Quelltext bearbeiten]

Die Matrix des linearen Gleichungssystems wird hierzu in eine Diagonalmatrix , eine strikte untere Dreiecksmatrix und eine strikte obere Dreiecksmatrix zerlegt, so dass gilt:

.

Die obige komponentenweise Iterationsvorschrift lässt sich dann folgendermaßen für den kompletten Vektor darstellen:

.

Üblich zur Einbettung als Präkonditionierer in andere iterative Verfahren wie Krylow-Unterraum-Verfahren schreibt man den Präkonditionierer als Matrix , wobei eine Approximation an ist, zu der sich ein lineares Gleichungssysteme günstig nach lösen lässt. Es gilt für das Jacobi-Verfahren . Für das Residuum ist gerade die Näherungslösung. Die Beziehung folgt unmittelbar:

,
.

Konvergenzuntersuchung[Bearbeiten | Quelltext bearbeiten]

Die Konvergenz wird wie bei allen Splitting-Verfahren mittels des banachschen Fixpunktsatzes untersucht. Das Verfahren konvergiert also, wenn der Spektralradius der Iterationsmatrix kleiner als eins ist. Insbesondere ergibt sich dies, wenn die Systemmatrix strikt diagonaldominant ist.

Erweiterung auf nichtlineare Gleichungssysteme[Bearbeiten | Quelltext bearbeiten]

Die Idee des Jacobi-Verfahrens lässt sich auf nichtlineare Gleichungssysteme mit einer mehrdimensionalen nichtlinearen Funktion erweitern. Wie im linearen Fall wird im -ten Schritt die -te Gleichung bezüglich der -ten Variablen gelöst, wobei für die anderen Variablen der bisherige Näherungswert genommen wird:

Für bis Erfüllung eines Abbruchkriteriums
Für :
Löse nach auf.

Hierbei ist das Lösen in der Regel als die Anwendung eines weiteren iterativen Verfahrens zur Lösung nichtlinearer Gleichungen zu verstehen. Um dieses Verfahren vom Jacobi-Verfahren für lineare Gleichungssysteme zu unterscheiden, wird häufig vom Jacobi-Prozess gesprochen. Die Konvergenz des Prozesses folgt aus dem Banachschen Fixpunktsatz wieder als linear.

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]