Kondensatormikrofon

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Ein Kondensatormikrofon (englisch condenser microphone, capacitor microphone) ist ein elektroakustischer Wandler, der Schall in ein entsprechendes elektrisches Signal wandelt.

Das Mikrofon nutzt die durch Abstandsänderungen zwischen der (beweglichen) Membran und der Gegenelektrode hervorgerufenen Kapazitätsänderungen, um je nach Ausführung Schalldruck oder Schallschnelle in ein elektrisches Signal umzuwandeln.

Schema eines Kondensatormikrofons

Prinzip[Bearbeiten | Quelltext bearbeiten]

Doppelgradientenmikrofonkapsel von einem Neumann U48 Kondensatormikrofon, Umschaltung Niere/Acht
THIELE M4 PGH mit Doppeltriode ECC83 als Kathodenfolger, Ohne Ausgangsübertrager, Umschaltung Niere/Kugel

Beim Kondensatormikrofon ist eine wenige Mikrometer dicke, elektrisch leitfähige Membran dicht vor einer – aus akustischen Gründen oft gelochten – Metallplatte elektrisch isoliert angebracht. Technisch betrachtet ist diese Anordnung ein Plattenkondensator mit Luft-Dielektrikum, der eine elektrische Kapazität C von etwa 20 bis 100 pF besitzt. Diese ist abhängig von der Plattenfläche A und dem Abstand d der Kondensatorplatten.

Auftreffender Schall bringt die Membran zum Schwingen, wodurch sich der Abstand d zwischen Membran und Gegenelektrode und damit auch die Kapazität des Kondensators verändert. Zur Auswertung der Kapazitätsänderung gibt es zwei Varianten:

Niederfrequenz-Schaltung [Bearbeiten | Quelltext bearbeiten]

Um diese Kapazitätsschwankungen in ein elektrisches Spannungssignal umzuwandeln, wird der Kondensator bei der Niederfrequenzschaltung über einen hochohmigen Widerstand mit einer Vorspannung aufgeladen. Diese Vorspannung wird auch Polarisationsspannung genannt. Der Widerstand bildet mit der Kapazität der Kondensatorfolie ein RC-Glied. Dessen Zeitkonstante muss so hoch gewählt werden, dass sich die Ladung während der Periode des tiefsten Tons, den das Mikrofon aufnehmen soll, nicht nennenswert ändert. Es ergibt sich je nach Kapazität der Mikrofonkapsel ein Widerstand im Bereich von 1 GΩ.

Ein Mikrofonverstärker (Impedanzwandler) passt direkt im Mikrofon die Impedanz für die Signalübertragung (Kabel) an. Die Signalspannung wird dabei nicht verstärkt.

mit

U – Spannung am Kondensator
Q – im Kondensator gespeicherte Ladung (für kurze Zeiträume als konstant angenommen)
CElektrische Kapazität der Kapsel
d – Abstand von Membran und Gegenelektrode
Elektrische Feldkonstante
A – Feldwirksame Fläche zwischen Membran und Gegenelektrode

Die Signalspannung am Ausgang ist die Differenz zwischen der Spannung am Kondensator und der Vorspannung aus der Spannungsversorgung. Sie hängt linear vom Folienabstand bzw. dessen Änderung ab. Bei großem Schalldruck kann es dennoch zu Verzerrungen kommen, da die Rückstellkraft der Membran nichtlinear ist und die Membran nicht linear zum Schalldruck ausgelenkt wird, und da die am Rand eingespannte Membran nicht parallel ausgelenkt wird, sondern sich wölbt. Abhilfe bietet ein größerer Folienabstand, der jedoch bei gleicher Fläche zu einer geringeren Signalspannung führt. Die Signalspannung kann durch Erhöhen der Vorspannung vergrößert werden.

Um elektromagnetische Einstreuungen im Mikrofonkabel auszuschließen, wird oft noch eine Signalsymmetrierung durch einen Übertrager oder durch eine elektrische Symmetrierstufe mit Transistoren vorgenommen.

Eine dem NF-Kondensatormikrofon nah verwandte Bauart ist das Elektret-Kondensatormikrofon. Hier ist die Kondensatorladung in einer Beschichtung mit Elektretfolie „eingefroren“; eine Kapselvorspannung wird nicht benötigt. Dennoch braucht auch dieses Mikrofon einen Impedanzwandler und für diesen eine Spannungsversorgung.

Hochfrequenz-Schaltung[Bearbeiten | Quelltext bearbeiten]

Bei einem Kondensatormikrofon in Hochfrequenzschaltung bildet die Mikrofonkapsel den Kondensator eines Schwingkreises, dessen Resonanzfrequenz von den Kapazitätsänderungen der Kapsel beeinflusst wird. Betrieben als Oszillator gibt der Schwingkreis ein moduliertes Signal im Bereich zwischen 7,68 und 27 MHz ab, das unmittelbar im Mikrofon demoduliert wird. Dabei können Frequenzmodulation, Phasenmodulation und Amplitudenmodulation zur Anwendung kommen.[1]

HF-Kondensatormikrofone benötigen gegenüber der NF-Bauweise eine umfangreichere Elektronik (untergebracht in einem oder zwei ICs), sind aber in folgenden Aspekten überlegen:

  • geringeres Rauschen, insbesondere im tieffrequenten Bereich unterhalb von 3 kHz (kein 1/f-Rauschen), erreichbar sind 5…10 dB(A) gegenüber 15…20 dB(A)
  • unempfindlich gegenüber elektrischen NF-Einstreuungen, da die Mikrofonkapsel keine NF-Signale benutzt
  • elektrisch symmetrischer Ausgang ohne NF-Ausgangstransformator trotz elektrischer Asymmetrie der Mikrofonkapsel, geringe Koppelkapazität zwischen Kapsel und Leitung, sehr hohe CMRR
  • Frequenzgang bis 0 Hz möglich (kein Hochpass durch Kapselkapazität und Widerstand der Kapsel/Speisungswiderstand), üblich sind aber zuschaltbare Hochpaßfilter
  • Empfindlichkeit ist unabhängig von Luftfeuchtigkeit und Temperatur (da mit einigen hundert Ohm Impedanz niederohmig im Arbeitsbereich, im Gegensatz zu hunderten Megaohm im Tieftonbereich)
  • keine Kapselvorspannung erforderlich, Stromversorgung nur für die Elektronik auch mit weniger als 48 V Phantomspeisung möglich[2]
  • keine elektrostatische Kraftwirkung auf die Membran (kein Kollapsspannungs-Problem)

Das erste Kondensatormikrofon in HF-Schaltung wurde 1923 mit einer Doppeltriode gebaut, allerdings gewannen diese erst mit der aufkommenden Transistortechnik in den 1960er Jahren an Bedeutung, die sich heutzutage in ICs befinden.

Akustische Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Da die Membranauslenkung und nicht die Membrangeschwindigkeit zum Signal führt, ist das Kondensatormikrofon technisch betrachtet ein Elongationsempfänger. Die sehr geringe Masse der Membran ermöglicht eine besonders präzise Abbildung des Schalls, was bei diesem Mikrofontyp in einem guten Impulsverhalten sowie in brillanten Höhen resultiert.

Kondensatormikrofone sind sowohl als Druckmikrofon als auch als Druckgradientenmikrofon erhältlich. Sie kommen in den verschiedensten Erscheinungsformen vor, da mit diesem Begriff nur das Wandlerprinzip bezeichnet wird. Der Begriff hat sich aber im Umgang als Mikrofon-Klasse etabliert, da klangliche Eigenschaften mit dem Prinzip der Wandlung eng verknüpft sind.

Manche Kondensatormikrofone haben eine veränderbare Richtcharakteristik. Ermöglicht wird das durch die Kombination zweier Druckgradientenmikrofone zu einem Doppelmembranmikrofon. Die Membranen stehen dabei „Rücken an Rücken“, mit gemeinsamer Gegenelektrode in der Mitte; das Ausgangssignal wird als Summe beider Einzelsignale gebildet. Jedes Einzelsystem für sich hat die Richtcharakteristik Niere. Durch Änderung der Polarisationsspannungen ergeben sich für das Gesamtsystem unterschiedliche Richtwirkungen[3][4]

Spannungsversorgung[Bearbeiten | Quelltext bearbeiten]

Kondensatormikrofone benötigen immer eine Spannungsversorgung, nicht nur für das Potentialgefälle zwischen den Kondensatorplatten, sondern auch für den eingebauten Impedanzwandler (Mikrofonverstärker).

Tonaderspeisung[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Tonaderspeisung

Die Tonaderspeisung benutzt bei symmetrischer Signalübertragung die beiden Signalleitungen zwischen Mischpult und Mikrofon für je einen Pol der Betriebs-Gleichspannung. Üblich sind ±12 V. Die Tonaderspeisung verursacht Störungen anderer daran angeschlossener (zum Beispiel dynamischer) Mikrofone und ist daher heute nur noch selten im Einsatz.

Phantomspeisung[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Phantomspeisung

Auch hier wird das Mikrofon vom Mikrofonvorverstärker bzw. Mischpult aus versorgt. Diese Methode kommt, wie auch die Tonaderspeisung, ohne zusätzliche Anschlüsse aus, da die Speisespannung über das Mikrofonkabel selbst transportiert wird.[5] Der Unterschied zur Tonaderspeisung besteht darin, dass ein Betriebsspannungs-Pol die beiden Signalleitungen der symmetrischen Signalübertragung benutzt, der andere benutzt die Masse (den Schirm). Üblich sind 48 Volt, seltener (historisch) 24 und 12 V, als Notbehelf bei einfachen Geräten auch 15 V. Andere am Mischpult symmetrisch angeschlossenen Mikrofone (zum Beispiel dynamische Mikrofone) funktionieren auch dann, wenn die Phantomspannung nicht abgeschaltet wird.

Bei unsymmetrischer Signalübertragung (zum Beispiel an einem Klinken-Mikrofoneingang) liegt oft an der Signalleitung über einen Vorwiderstand ebenfalls eine kleine Speisespannung an, die nur von Elektretmikrofonen benötigt wird. Andere Mikrofone schließen die Spannung (gefahrlos) kurz.

Batteriespeisung[Bearbeiten | Quelltext bearbeiten]

Im nicht- oder semiprofessionellen Bereich, etwa bei Verwendung unsymmetrischer Eingänge eines mobilen Recorders, muss zur Spannungsversorgung ein meistens batteriebetriebenes Speiseteil in die Mikrofonleitung geschaltet werden, sofern das Kondensatormikrofon nicht selbst ein solches Speiseteil im Griffstück integriert hat. Dabei wird die Vorspannung mit einem Spannungswandler aus den 1,5 Volt einer handelsüblichen Batterie gewonnen. Die Qualität der so gewonnenen Gleichspannung wirkt sich direkt auf die Mikrofonsignalqualität aus. Da der Leistungsbedarf eines Kondensatormikrofons sehr gering ist, hält eine Batterie viele Stunden vor.

Elektret-Mikrofone benötigen keine Vorspannung, hier dient die Batterie nur der Speisung des Impedanzwandlers.

Netzanschluss[Bearbeiten | Quelltext bearbeiten]

Ältere Kondensatormikrofone (siehe Bild) besitzen einen Röhren-Vorverstärker und zusätzlich zum Signalkabel einen Netzanschluss. Ein Netztransformator im Mikrofongehäuse versorgt den Heizkreis der Röhre und erzeugt die Anoden- und die Vorspannung.

Klein- und Großmembrankondensatormikrofon[Bearbeiten | Quelltext bearbeiten]

Kleinmembranmikrofon[Bearbeiten | Quelltext bearbeiten]

Als Kleinmembranmikrofon gelten nach branchenüblicher Bezeichnung all jene Mikrofone, deren Mikrofonkapsel einen Membrandurchmesser von kleiner als 1 Zoll, entsprechend 2,54 cm aufweisen. Typisch bei Kondensatormikrofonen sind Durchmesser von 12 Zoll (1,27 cm) und 14 Zoll (0,64 cm).

Gegenüber größeren Membranen ist das Übertragungsmaß geringer, weil die dem Schallfeld ausgesetzte Fläche kleiner ist. Eine nachgeschaltete Verstärkung wiederum erhöht das Rauschen. Mit aktueller Verstärkertechnik spielt dieser Nachteil jedoch in der Praxis keine Rolle mehr.

Die akustischen Vorteile eines kleinen Kapseldurchmessers liegen im Bereich höherer Frequenzen. Unterhalb einer Wellenlänge, die dem doppelten Membrandurchmesser entspricht, ergeben sich aus Interferenzen besondere Effekte wie Partialschwingungen und eine komplexe Richtwirkung. Die Wellenlänge des Luftschalls bei 10 kHz beträgt etwa 3,4 cm, so dass eine 12-Zoll-Membran bis zu dieser Frequenz einen gleichförmigen Verlauf der Empfindlichkeit in Abhängigkeit vom Schalleinfallswinkel aufweisen kann. Zudem wird das Schallfeld von der üblicherweise kleinen Bauform dieser Mikrofone nur geringfügig gestört, was beispielsweise bei Stereo-Mikrofonanordnungen mit zwei oder mehr Mikrofonen vorteilhaft ist.

Wegen ihrer klanglichen Neutralität werden Kleinmembranmikrofone bevorzugt bei Musikproduktionen und Übertragungen mit Anspruch auf klangliche Authentizität eingesetzt.

Großmembranmikrofon[Bearbeiten | Quelltext bearbeiten]

Neumann-Großmembran-Kondensator-Mikrofon U 87 mit Mikrofonspinne

Als Großmembranmikrofon bezeichnet man üblicherweise Kapseln mit Membrandurchmessern von größer oder gleich 1 Zoll (= 2,54 cm). In der Praxis werden auch Membranen mit nur 0,85 Zoll = 1,9 cm Durchmesser bereits als Großmembran bezeichnet.

Obwohl die Baugröße oftmals als Qualitätsmerkmal dargestellt wird, sind Großmembranen nicht in jeder Hinsicht Kleinmembranen überlegen. Vielmehr besitzen sie einen eigenen, oft subjektiv als „warm“ umschriebenen Klangcharakter, der ihren Anwendungsbereich bestimmt:

  • Eine größere Kapsel weist für höhere Frequenzen (also kleinere Wellenlängen) einen richtungsabhängigen Amplitudenfrequenzgang auf, weil verstärkt Interferenzen auftreten.
  • Großmembranmikrofone stellen im Schallfeld einen relativ großen Störkörper dar, der die Schallausbreitung in unmittelbarer Umgebung des Mikrofons wesentlich beeinflusst – noch verstärkt durch das üblicherweise großvolumige Gehäuse dieser Mikrofone.

Zusammen mit den Nahbesprechungseffekt bieten Großmembranen aufgrund dieser akustischen Gegebenheiten spezielle Gestaltungsmöglichkeiten schon bei der Aufnahme, die durch eine nachfolgende elektronische Bearbeitung nicht in diesem Umfang nachzubilden sind.

Vergleich zwischen Klein- und Großmembran-Mikrofonen[Bearbeiten | Quelltext bearbeiten]

kleine Membran große Membran
Eigenrauschen höher niedriger
Empfindlichkeit niedriger höher
Schalldruckbeständigkeit höher geringer
Frequenzbereich breiter enger
Schallfeldeinfluss gering stark
Dynamikbereich höher geringer

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Michael Dickreiter, Volker Dittel, Wolfgang Hoeg, Martin Wöhr (Hrsg.): Handbuch der Tonstudiotechnik. 8. überarbeitete und erweiterte Auflage, 2 Bände. Walter de Gruyter, Berlin/Boston 2014, ISBN 978-3-11-028978-7 oder e-ISBN 978-3-11-031650-6.
  • Thomas Görne: Mikrofone in Theorie und Praxis. 8. Auflage. Elektor-Verlag, Aachen 2007, ISBN 978-3-89576-189-8.
  • Norbert Pawera: Mikrofonpraxis. 4. Auflage. Franzis Verlag, München 1993, ISBN 3-932275-54-3.
  • Fritz Kühne: Mono-, Stereo- und Transistor-Mikrofone. 7. Auflage. Franzis Verlag, München 1966.
  • Andreas Ederhof: Das Mikrofonbuch. 2. Auflage. Carstensen Verlag, München 2006, ISBN 3-910098-35-5.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Thomas Görne: Mikrofone in Theorie und Praxis. 8. Auflage. Elektor-Verlag, 2007, ISBN 978-3-89576-189-8, S. 49.
  2. Eberhard Sengpiel, Manfred Hibbing: Kondensatormikrofone mit Hochfrequenzschaltung. Abgerufen am 24. Oktober 2019.
  3. Michael Dickreiter: Handbuch der Tonstudiotechnik. 6. Auflage 1997, Band 1, S. 182.
  4. Thomas Görne: Mikrofone in Theorie und Praxis. 2. Auflage 1996, S. 87.
  5. Michael Dickreiter: Handbuch der Tonstudiotechnik. 6. Auflage 1997, Band 1, S. 174.