„Lichtwellenleiter“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
K lx
Zeile 288: Zeile 288:
* Govind P. Agrawal: ''Nonlinear Fiber Optics (Optics and Photonics).'' Academic Press, ISBN 0-12-045143-3
* Govind P. Agrawal: ''Nonlinear Fiber Optics (Optics and Photonics).'' Academic Press, ISBN 0-12-045143-3
* Dieter Meschede: ''Optik, Licht und Laser.'' Teubner, ISBN 3519132486
* Dieter Meschede: ''Optik, Licht und Laser.'' Teubner, ISBN 3519132486
DAS IST EIN TEST


=== Technik ===
=== Technik ===

Version vom 12. Februar 2010, 12:45 Uhr

Kunststoff-Lichtwellenleiter

Lichtwellenleiter (Abk.: LWL) oder Lichtleitkabel (LLK) sind aus Lichtleitern bestehende oder zusammengesetzte, teilweise konfektionierte, mit Steckverbindungen versehene Kabel und Leitungen zur Übertragung von Licht im sichtbaren sowie ultravioletten oder infraroten Bereich. Lichtleitkabel bilden mehr oder weniger stark biegsame Verbindungen zur Übertragung optischer Signale oder auch hoher optischer Strahlungsleistungen.

Die verwendeten Lichtleiter, in denen die Strahlung fortgeleitet wird, bestehen je nach Anwendung aus Mineralglas (meist Kieselglas bzw. Quarzglas), oder organischem Glas (Kunststoff).

Physikalisch gesehen handelt es sich dabei um dielektrische Wellenleiter.

Lichtwellenleiter kommen heute vor allem

zum Einsatz.

Zur Signalübertragung über kurze bis mittlere Entfernungen (bis ca. 10 m) und zur Dekoration werden Lichtwellenleiter aus Polystyrol oder Polymethylmethacrylat (PMMA) verwendet.

Geschichte des Lichtwellenleiters

Schon 1870 versuchte John Tyndall, Licht gezielt in und durch einen Wasserstrahl zu leiten. In den Folgejahren beschäftigten sich Wissenschaftler und Techniker weltweit mit den Möglichkeiten, Lichtsignale durch verschiedene Medien zu übertragen. Mitte der 1950er Jahre wurden optische Leiter primär zur Beleuchtung innerer Organe in der Medizintechnik angewandt, für andere Anwendungen war der Lichtverlust im optischen Leiter noch zu groß. Erst mit der Entwicklung des ersten Lasers durch T.H. Maiman 1960 ergab sich die Möglichkeit, Licht konzentriert durch ein Medium zu transportieren. Die experimentelle Phase der gezielten Informationsübertragung über Lichtwellenleiter konnte nun in eine Phase der technischen Realisierung eintreten.

1966 entdeckten Charles Kuen Kao und George Hockham, dass das Hauptproblem für die verlustbehaftete Übertragung im Glas auf Unreinheiten im Glas zurückzuführen ist. Für seine Pionierarbeiten im Bereich der Glasfaseroptik wurde Kao 2009 mit dem Nobelpreis für Physik geehrt. 1970 produzierte und entwickelte das amerikanische Unternehmen Corning Inc. den ersten verlustarmen Lichtwellenleiter, der in der Lage war, Signale über eine längere Strecke ohne größere Verluste zu übertragen. Die Nutzung von Lichtwellenleitern zur Übertragung von Telefonsignalen wurde von nun an stetig vorangetrieben, und bereits 1978 verband die Deutsche Bundespost zwei Vermittlungstellen in Berlin über eine ca. 4 km lange Verbindungsstrecke, die aus mehreren Glasfasern bestand. In den folgenden Jahren wurden die Lichtwellenleiter stetig optimiert, und immer größere Strecken konnten mit immer höheren Datenmengen und -raten überbrückt werden. 1985 wurden so zum Beispiel von der British Telecom erstmals Signale ohne Zwischenverstärkung über eine Strecke von 250 km übertragen.

Die anfänglich gegenüber Koaxialkabeln zu hohe Dämpfung und die damit verbundene kürzere Streckenoption haben sich im Laufe der Jahre ins Gegenteil verkehrt. Lichtwellenleiter umspannen heute unseren Kontinent und sind das Rückgrat der globalen Kommunikation und Informationsübertragung. AT&T, NEC und Corning stellten im Mai 2009 einen neuen Weltrekord auf. Über eine einzelne Glasfaser über eine Strecke von 580 km wurden 320 Kanäle mit einer Datenrate von jeweils 114 Gigabit/s übertragen, was einer Bandbreite von insgesamt 32 Terabit entspricht.

Aufbau und Funktionsweise

Lichtweg (gelbe Linie mit blauem Hintergrund) in einer Multimode-Glasfaser

Glasfaserkabel bestehen aus hochtransparenten Glasfasern (meist aus reinstem Kieselglas, chemisch Siliciumdioxid), die mit einem Glas niedrigerer Brechungszahl ummantelt sind. Die Faser besteht aus einem Kern (engl. core), einem Mantel (engl. cladding) und einer Schutzbeschichtung (engl. coating und/oder buffer). Der lichtführende Kern dient zum Übertragen des Signals. Der Mantel hat eine niedrigere optische Brechzahl (Dichte) als der Kern. Der Mantel bewirkt dadurch eine Totalreflexion an der Grenzschicht und somit eine Führung der Strahlung im Kern des Lichtwellenleiters. Dennoch tritt ein Teil der Lichtwelle auch im Mantel auf, nicht jedoch an dessen Außenoberfläche.

Bei Unterschreitung des minimalen Biegeradius der Glasfaser findet am Cladding keine Totalreflexion mehr statt, und ein Teil des Lichtes entweicht aus dem Glaskern. Dies macht sich in Form einer Dämpfungserhöhung bemerkbar und kann je nach Leistungsbudget, Streckenlänge und Biegung zum Totalausfall der Übertragung führen.

Speziell getrieben durch die hohen Anforderungen der Signalstärke und -qualität im Bereich FttH (Fiber to the Home) und den in Wohnhäusern schlechteren Installationsbedingungen entwickelten Glasfaserhersteller wie Corning, Draka, OFS etc. in der jüngsten Zeit neue Glasfasern, die um den Faserkern noch zusätzlich eine hochreflektierende Fluoridschicht oder ein auf Nanostruktur basierendes Cladding aufweisen.

Durch diese neuartigen biegeunempfindlicheren Fasern ist es möglich, auch bei Biegeradien, die im Bereich von unter 10 mm liegen, eine nahezu verlustlose Übertragung sicherzustellen. Diese neuartigen Fasertypen werden die bisherigen Fasertypen sowohl im Multimodebereich als auch im Singlemodebereich zukünftig weitgehendst ersetzen und sind spezifiziert nach z.B. ITU-T G.652C und D.

Die äußere Beschichtung ist ein Schutz vor mechanischen Beschädigungen und besteht meist aus einer 150–500 µm dicken Lackierung aus speziellem Kunststoff (meist Polyimid, Acryl oder Silicon), die die Faser auch vor Feuchtigkeit schützt. Ohne die Beschichtung würden die auf der Faseroberfläche vorhandenen Mikrorisse zu einer erheblichen Verringerung der mechanischen Belastbarkeit führen.

Arten

Bei Gradientenindexfasern nimmt die Brechzahl in radialer Richtung nach außen hin kontinuierlich ab. Im Gegensatz dazu ändert sich bei der Stufenindexfaser die Brechzahl vom Kern- zum Mantelglas hin abrupt. Erzeugt wird die Brechzahländerung beispielsweise durch gezielte Ablagerung von Germanium-Schichten auf der Preform, aus der die Glasfaser gezogen wird, wodurch später im Randbereich der Faser eine Dotierung entsteht.

50/125-µm-Multimodekabel mit SC-Duplex-Steckern

Die Unterscheidung zwischen Gradientenindexfasern und Stufenindexfasern findet man nur bei so genannten Multimode-Fasern. Deren Gegenpart, die Singlemode-Faser, gibt es nur als Stufenindexfaser.

Multimode

Aufgrund mehrerer möglicher Lichtwege kommt es zu Signalbeeinflussungen (Laufzeitunterschiede), daher sind Multimode-Fasern zur Nachrichtenübertragung über große Distanzen bei hoher Bandbreite nicht geeignet. Zur Reduzierung der Laufzeitunterschiede wird der Faserkern nicht mit einer einheitlichen Dichte versehen, sondern als Gradientenindexprofil mit einer höheren optischen Dichte im Zentrum und zu den Außenrändern hin abfallenden optischen Dichte gefertigt. Hierdurch wird erreicht, dass Randmoden, die einen längeren Weg zu überbrücken haben weniger stark "gebremst" werden während kernnahe Moden mit kürzerem Weg abgebremst werden und somit das Modenpaket nahezu zeitgleich beim Empfänger ankommt.

Der Faserkern, in dem die Signalübertragung erfolgt und der als Gradientenindexprofil ausgeführt ist, weist typischerweise einen Durchmesser von 62,5 oder 50µm auf. Der Kern selbst wird durch eine optische Barriere, dem Cladding umgeben. Das Cladding weist einen Außendurchmesser von typischerweise 125µm auf. Zum mechanischen Schutz der Glasfasern wird um das Cladding herum noch ein Coating aufgebracht, das einen Durchmesser von 250µm aufweist.

Ähnlich wie in der Kupfertechnik wurden zur Kenntlichmachung der Übertragungsbandbreiten und des Leistungsvermögens von Multimodeglasfasern optische Klassen und Kategorien eingeführt. Heute spricht man von den Faserkategorien OM1, OM2, OM3 und OM4. Die Methoden zur Klassifizierung einer Multimodeglasfaser unterscheiden sich hierbei wesentlich. Frühere Übertragungsverfahren nutzten primär LEDs zu Sendezwecken. LEDs sind bauartbedingt jedoch nur bis zu einer Datenrate von 622MBit/s geeignet und koppeln, auf Grund ihrer geringen Fokussierung, sowohl den Faserkern als auch einen Teil des Claddings Lichtmoden ein. Man spricht hier von OFL (Over Fullfilled Launch). Ab Gigabit Ethernet kommen VCSEL (Vertical cavity surface emitting Laser) zum Einsatz, die eine recht starke Fokussierung aufweisen und nur noch einen Bruchteil des Faserkerns anregen. VCSEL arbeiten typisch bei einer Wellenlänge von 850nm. Hier spricht man von RML (reduced mode launch). Die Messmethodik der Bandbreite von Glasfasern musste insofern abgeändert werden und für hochwertige lasertaugliche Glasfasern wird heute die DMD oder EMB Messmethode zur Feststellung genutzt.

Die Faserkategorien OM1 und OM2 sind typischerweise für LED-basierte Anwendungen konzipiert während die Faserkategorien OM3 und OM4 für Applikationen wie Gigabit Ethernet, 10 Gigabit Ethernet und höher vorgesehen sind. Bedingt durch die Anforderungen an OM3- und OM4-Fasern sind diese auch nur noch als 50µm erhältlich während 62,5µm Fasern heutzutage kaum noch eine Rolle spielen.

Die maximale Übertragungsreichweite auf Multimodefasern richtet sich nach der Datenrate, der genutzten Wellenlänge (850nm oder 1300nm) und der eingesetzten Faserkategorie. Während bei 10 und 100 MBit/s ohne weiteres 2000m auch mit OM1- und OM2-Fasern möglich sind, ist die erreichbare Länge für Gigabit Ethernet bei OM2-Fasern mit 50µm auf 600m und bei 62,5µm Fasern auf 300m begrenzt. Fasern der Kategorie OM3 und OM4 erlauben hingegen auch erreichbare Gigabit-Längen von bis zu 1100m bei 50µm. Gleiches gilt für 10 Gigabit Ethernet. OM3 Fasern erlauben bis zu 300m während OM4 Fasern bis zu 550m abdecken.

Die höheren Reichweiten werden jedoch nicht durch mehr Leistung erreicht, sondern es muss ein hoher technischer Aufwand betrieben werden, um die einzelnen Lichtpulse in hochkomplexer Weise zu formen. Diese spezielle Formung berücksichtigt die chromatische Dispersion (Spektrumsverschiebung der Lichtmoden 835nm bis 870nm) und Modendispersion (Laufzeitunterschiede der einzelnen Lichtstrahlen).

Auch die dickeren Lichtwellenleiter für Hochleistungs-Laser (hier muss die Leistungsdichte im Kern der Faser reduziert werden, da dieser sonst zerschmolzen oder zerrissen würde) oder für Beleuchtungs- (hier ist ein Singlemode-Betrieb aufgrund der vielen unterschiedlichen Wellenlängen die gleichzeitig übertragen werden müssen nicht möglich) und Messzwecke (da hier oft kurze Strecken zwischen Detektor und Prüfling vorliegen und die Handhabung einfacher ist, z. B. Strahleinkopplung) sind vom Prinzip her Multimode-Fasern.

Mono- bzw. Singlemode

Hauptartikel: Singlemode-Faser

Das Brechzahlprofil von Singlemode-Fasern ist so dimensioniert, dass die bei Multimode-Fasern problematische Mehrwegeausbreitung (intermodale Dispersion) entfällt – das Signallicht breitet sich in einer Singlemode-Faser nur in einem einzigen geführten Wellenleitermodus aus, daher die Bezeichnung single-mode. Damit sind wesentlich größere Übertragungsdistanzen und/oder -bandbreiten möglich, und der als nächstes auftretende limitierende Effekt ist die chromatische Dispersion des Wellenleitermodus.

Singlemode-Fasern haben üblicherweise einen deutlich kleineren Kern als Multimode-Fasern: die Standard-Singlemode-Faser (SSMF, z. B. Corning SMF-28) hat einen Kerndurchmesser von 9 µm. Das ist deutlich kleiner als der Kerndurchmesser von Multimode-Fasern, was die praktische Handhabung bei der Lichteinkopplung und Faserverbindung erschwert. Daher werden für kürzere Distanzen weiterhin Multimode-Fasern verwendet.

Die Singlemode-Faser, die teilweise auch als Monomode-Faser bezeichnet wird, hat meistens einen Kerndurchmesser von typischerweise 3 bis 9 µm, der äußere Durchmesser beträgt jedoch auch hier 125 µm. Die eigentliche Übertragung der Information erfolgt im Kern der Faser.

Die bisher gebräuchlichsten Singlemode-Fasern sind für den Einsatz bei λ=1310 nm oder λ=1550 nm (1625 nm jedoch nicht so häufig im Gebrauch) bestimmt, da bei diesen Wellenlängen die EDFAs (Erbium-doped Fiber Amplifier, Erbium-dotierte Faser-Verstärker) betrieben werden und – was weit wichtiger ist – dort deren Dämpfungsminimum liegt. Zwar ist die Dispersion bei diesen Wellenlängen ungleich Null, deren Effekt kann aber durch dispersionskompensierende Fasern reduziert werden. Es ist sogar von Vorteil, dass die Dispersion ungleich Null ist, da sonst nichtlineare Effekte wie z. B. die Vier-Wellen-Mischung auftreten würden, welche das Signal erheblich stören. Zu beachten ist allerdings, dass dispersionskompensierende Fasern, die in sogenannten Dispersionskompensationsmodulen Anwendung finden, mit ihrer hohen Dämpfung das Powerbudget stark belasten können. Ein weiterer Vorteil dieser Wellenlänge ist, dass sich durch ein dynamisches Wechselspiel der dispersiven und optisch-nichtlinearen (Kerr-Effekt) Eigenschaften von Glasfaserkabeln gerade bei dieser Wellenlänge Solitonen erzeugen lassen. Die Wellenpakete (Lichtpulse) können demnach weitestgehend unverfälscht übertragen werden.

Die Standard-Einmodenfaser hat ein Stufenprofil, bei dem der Kern etwas höher dotiert ist als der Mantel mit einem Brechzahlhub Δ von ca. 0,003.

Kernexzentrizität und Rundheit

Auf Grund Ihrer Beschaffenheit als Verbundmaterial ist es wichtig, dass die Lage des Faserkernes mittig ebenso wie die Abmessungen und Rundheit der Faser an sich höchstmöglich genau sind. Ein wichtiger Punkt hierbei ist die Kernexzentrizität die auf ein Minimum reduziert sein sollte. Beachtet man, dass bei einer Singlemodefaser das Signal durch einen 9µm schmalen Kern transportiert wird und berücksichtigt man weiter, dass eine Steckverbindung zwei Fasern durch die Ferrullen des Steckers, die in der Kupplung in einer Führungshülse geführt werden, direkt gegenüber positioniert, so wirken hier verschiedene Faktoren die allesamt mit Toleranzen behaftet sind, aufeinander ein.

Beispiel: der Faserkern einer Singlemodefaser liegt 1 µm außerhalb des Zentrums. Die Bohrung in der Ferrulle der Stecker weist wiederum eine Größe von z.B. 126µm±1µm auf und die Führungshülse, die die Stecker voreinander positioniert, weist ebenfalls eine Toleranz von 2µm auf, so kann es im ungünstigsten Fall dazu führen, das die Faserkerne sich nur noch zu ca. 50% überdecken und eine undefinierte Menge an Licht über das Cladding aus dem Kern ausgekoppelt wird. Ist der Effekt bei Singlemode auf Grund des geringen Kerndurchmessers von 9µm sehr ausgeprägt, neigt man bei Multimodeinstallationen dazu, etwas toleranzbereiter zu sein. Neue Applikationen wie 10 Gigabit Ethernet und speziell 40 und 100 Gigabit Ethernet haben jedoch nur noch ein geringes Budget für Dämpfung (Verluste) zur Verfügung und zu hohe Toleranzen und Abweichungen können auch hier schnell negativen Einfluss auf die Übertragungsstrecke und -länge nehmen.

Water-Peaks

Frequenzabhängigkeit der Lichtdämpfung durch Water-Peaks

Fasern absorbieren Wasser. Die OH--Gruppen weisen Absorptionsmaxima bei 950 nm, 1380 nm und 2730 nm auf, die Water-Peaks. Einfache Fasern werden deshalb zwischen den Maxima bei 850 nm, 1310 nm oder 1550 nm betrieben.

Eine Weiterentwicklung der Standardsinglemode-Faser ist die sog. Low-Water-Peak-Faser (ITU-T G.652.C und G.652.D). Im Gegensatz zur SSMF können bei dieser Faser auch im Wellenlängenbereich zwischen 1310 nm und 1550 nm Daten übertragen werden, da diese Fasern wasserfrei hergestellt werden.

Mit diesen Fasern wird das sogenannte E-Band (extended band) für die Datenübertragung geöffnet. Dieser Bereich wird überwiegend mit der CWDM-Technologie (Coarse Wavelength Division Multiplex oder Grobes Wellenlängenmultiplex) erschlossen, die es ermöglicht aufgrund der großen Kanalabstände auf sehr kostengünstige, ungekühlte Laser für die Übertragung zurückzugreifen.

Als Singlemode-Fasern für Weitverkehrsnetze wurden Non-Zero-Dispersion-Fasern (ITU-T G.655.C) verwendet. Sie verbinden eine sehr geringe Dämpfung mit einer geringen Dispersion im sogenannten C-Band um 1550 nm. Somit ist es möglich längere Strecken ohne Dispersionkompension zu erreichen, als dies mit SSMF möglich ist.

Aufbau einer LWL-Übertragungsstrecke

Die Übertragungsstrecke besteht aus:

  • einem optischen Sender,
  • einem Glasfaserkabel, ggf. mit Repeatern (Nachverstärkung und Signalregeneration) und
  • einem optischen Empfänger.

Diese Elemente müssen folgende Forderungen erfüllen:

  • Der optische Sender braucht eine Sendeleistung von –24 bis –1 dBm.
  • Das Glasfaserkabel muss eine kleine Dämpfung / Dispersion besitzen.

Monomode-Fasern (geringe Dispersion im typischen C-Band um 1550 nm), werden im Fernnetzbereich eingesetzt. Multimode-Fasern (größere Dispersion) finden dagegen im Ortsbereich oder in kleinen Netzen Anwendung.

Zur Wiederherstellung des durch Dispersion verzerrten Signales werden sogenannte Dispersionkompensationsmodule verwendet. Diese bestehen in der Hauptsache aus Kompensationsfasern, die eine der Übertragungsfaser entgegensetzte Dispersion besitzen.

Der optische Empfänger am Ende einer Glasfaser muss eine große Empfindlichkeit besitzen (typisch −52 dBm) und sehr breitbandig sein.

Typische Bauelemente sind:

  • optische Sender: LEDs (bis zu 622 Mbit/s) oder Laserdioden (Multimode typisch > 622 MBit/s VCSEL, Singlemode typisch DFB oder Fabry-Perot-Laser),
  • optische Empfänger: PIN-Dioden oder Avalanche-Dioden (APD),
  • als Sender, Zwischenverstärker bei langen Strecken oder Empfängerverstärker: optische Verstärker, z. B. EDFA
  • optische Filter bei Wellenlängenmultiplex sowie
  • optische Schalter bei Zeitmultiplex.

Verlegung

Die Verlegung erfolgt oft unterirdisch. Die Kabel werden in bereits bestehenden Schächten und Rohren, z. B. Abwasserkanälen, untergebracht und anschließend an den gewünschten Stellen mittels Verteilern zu den einzelnen Gebäuden verlegt. Dies ist kostengünstig, da keine Bauarbeiten nötig sind und durch die Ein- und Ausgangsschächte die jeweiligen Verbindungen schnell und einfach installiert werden können. Bei FTTH (Fiber to the Home) werden die Kabel mit Durchmesser 2 mm in den schon vorhandenen Telefonanschlusskanälen (Elektrokanälen) verlegt.

Verbindungstechniken

Die LWL-Fasern werden in der Regel mit Steckverbindern verbunden. Bei endlos rotierenden Achsen können sogenannte Schleifringübertrager oder Drehverteiler (mikrooptische Drehübertrager) zum Einsatz kommen. Diese werden zwischengeschaltet und ermöglichen die kontinuierliche Datenübertragung (analog oder digital) von stehenden auf rotierende Bauteile.

Steckverbindungen

Grundsätzliches

LWL-Stecker zur Nachrichtenübertragung wurden früher stets mit einer planen, zur Faserachse rechtwinkligen Endfläche der eingebetteten Faser gefertigt. Die gesteckte Verbindung stellt dann eine direkte Berührung der Planflächen der Fasern sicher.

Diese planen Endflächen haben jedoch gewisse Nachteile:

  1. Der Anpressdruck verteilt sich auf die gesamte Steckerendfläche und nicht nur auf den für die Übertragung relevanten Bereich des Faserkernes.
  2. Verunreinigungen oder Beschädigungen auf der Steckerendfläche (auch außerhalb des Kernbereiches) können bewirken, dass beim Stecken ein Luftspalt zwischen den beiden Steckern verbleibt, welcher zu einer erhöhten Dämpfung und Reflektivität der Verbindung führt.

Aus diesem Grunde wurde der sogenannte PC-Stecker entwickelt (engl. physical contact). Dieser Stecker hat eine ballige Endfläche und beim Stecken kontaktieren sich physisch nur die Kernflächen (Faserenden) der beiden Stecker. Die oben beschriebenen Probleme wurden dadurch weitgehend vermieden.

Stecker dieser Bauart führen oft ein „PC“ als Ergänzung in Ihrer Bezeichnung – wie z. B. ST/PC, SC/PC, FC/PC usw. Heutzutage sind alle qualitativ hochwertigen Stecker „PC-Stecker“.

Immer höhere Anforderungen an die Rückflussdämpfung der installierten Steckverbindungen im Bereich der MAN und WAN Netze brachten schließlich den sogenannten HRL (engl. high return loss) oder APC (engl. angled physical contact) Stecker hervor. Bei dieser Steckerart ist die Steckerendfläche nicht nur bauchig, sondern steht auch winklig zur Faserachse (Standard = 8°). Durch diesen Aufbau wird von der Steckerendfläche reflektiertes Licht aus dem Kern über das Mantelglas in die Luft hinaus gebrochen und kann somit die Licht-(Daten-)übertragung nicht mehr stören. UPC und APC Steckertypen kommen bei Singlemodeübertragungen zum Einsatz und Ihre Ultrapolish oder Angled Ausführung optimieren die bei diesen Übertragungsarten wichtige Kenngrösse der Rückstreuung. Stecker dieser Bauart führen ein APC oder HRL als Ergänzung in ihrer Bezeichnung. (ST/APC, SC/APC, FC/APC, LC/APC, E2000/APC usw.) Stecker dieser Bauart finden vor allem in hochdatenratigen City-(MAN)- oder Weitverkehrsnetzen-(WAN)-Anwendung.

Die am häufigsten verwendeten Steckerarten sind heute LC (engl. local connector) (MAN, WAN) und SC (engl. subscriber connector) (LAN). Von älteren Installationen sind auch noch ST (engl. straight tip) und E-2000 (MAN, WAN) weit verbreitet.

ST-Stecker
  • ST: Diese Stecker (auch als BFOC-Stecker bekannt) sind in LANs sehr verbreitet. Geeignet ist dieser Stecker für Monomode- und Multimode-Glasfaserkabel, wobei er hauptsächlich bei Multimode-Anwendungen verwendet wird. Die geringe Einfügungsdämpfung prädestiniert diesen Steckertyp für den Einsatz bei passivem Rangieren (Patching) bzw. für Anwendungen mit geringem Dämpfungsbudget. Die mittlere Einfügedämpfung liegt bei 0,3 dB, die maximale bei 0,5 dB.
SC-Stecker
  • SC: Dieser Stecker löste im Jahre 2002 den ST Stecker aus den Normen EN50173 und ISO 11801 als Standard für LAN-Verkablungen ab. In der Neufassung der EN50173 und ISO 11801 wird er jedoch durch den LC Connector abgelöst werden. Sein rechteckiges Design kann für Multimode- und Monomode-Glasfaser verwendet werden. Die mittlere Einfügedämpfung liegt bei 0,2 dB, die maximale bei 0,4 dB (gegen Master gemessen). Der Vorteil gegenüber dem ST Stecker liegt in der Push-Pull-Technik – d. h. der Stecker verriegelt sich automatisch beim Einstecken und entriegelt sich beim Abziehen (Vergleich: ST = Bajonett-Verschluss). Dadurch lassen sich Duplexstecker erstellen (zwei Stecker, verbunden durch einen Duplex-Clip) und Duplex-Verbindungen gleichzeitig stecken und abziehen.
LC-Stecker
  • LC: Der LC-Stecker ist ein sogenannter Small Form Faktor Stecker. In der Duplexvariante nimmt er somit den Platzbedarf des in der Kupferübertragungstechnik verbreiteten RJ45 ein und benötigt somit nur halb soviel Platz wie der SC Stecker. Die Ferrulenstärke wurde von 2,5 mm auf 1,25 mm verringert und es gibt den LC Stecker sowohl als PC, UPC oder APC Version für Multimode oder Singlemodeanwendungen. In den Neufassungen der EN50173 und ISO11801 wird der LC Stecker den SC-Stecker als Standard für LAN Verkabelungen ablösen. Ebenso wird er als Standardsteckverbinder im Bereich des Rechenzentrums und der zugehörigen Normkapitel, z.B. EN50173-5 geführt. Typische Dämpfungswerte liegen zwischen 0,1 und 0,3 dB. Er findet Verwendung beim Anschluss an Mini-GBICs.
E2000-Stecker
  • E2000: Dieser Stecker hat sich deutschlandweit bei MAN oder WAN Strecken durchgesetzt. Er verfügt gegenüber den oben genannten Steckern über eine Laserschutzklappe, die das Risiko von Augenverletzungen minimiert, lässt sich einfach farblich kodieren und verfügt ebenfalls über einen Push-Pull-Mechanismus. Er wird mittlerweile als sogenannter 0,1-dB-Stecker mit einer garantierten Dämpfung von maximal 0,1 dB angeboten.

Weitere Standard-Steckertechniken sind DIN-Stecker, FC-Stecker, MIC-Stecker, MiniBNC-Stecker, FSMA-Stecker, MTRJ-Stecker und ESCON-Stecker.

  • MIC-Stecker sind sehr groß, nehmen zwei Fasern auf (Duplex) und werden fast ausschließlich in FDDI-Netzen verwendet. Sie sind vertauschungssicher und bieten die Möglichkeit, Codierungen zur Unterscheidung verschiedener Links anzubringen.
  • MTRJ-Stecker nehmen ebenfalls zwei Fasern auf, die Übergänge sind jedoch in einem gemeinsamen Kunststoffblock eingebettet, der die Form eines RJ-45-Steckers hat. Diese Bauform verhindert ebenfalls das Vertauschen der Hin- und Rückleiter, ist sehr einfach zu stecken und wieder zu entriegeln und ermöglicht hohe Packungsdichten auf Patchfeldern und Switchports. Der Stecker ist für Monomode- und für Multimodefasern geeignet.
MTRJ-Stecker
  • MPO (MTP(TM)) Steckverbinder – ist definiert im Standard IEC61754-7 und TIA/EIA 604-5. Er ist in der Norm ISO11801 sowie EN50173-5 neben dem LC Stecker für Anwendungen im Bereich Rechenzentrum standardisiert und unterstützt paralleloptische Übertragungen. Der MPO ist ähnlich dem MTRJ ein Mehrfaserstecker, der, nicht grösser als ein RJ45 Stecker, typischerweise 12 oder 24 Fasern (Versionen bis zu 72 Fasern verfügbar) aufnimmt. typische Dämpfungswerte des MPO liegen im Bereich um die 0.3 dB. Der MTP(TM) Stecker ist ein von dem Unternehmen US-Conec auf Basis des MPO entwickelter High-Performance MPO Stecker. Verfügbar ist der MPO Stecker sowohl als PC als auch als APC Variante mit Schrägschliff. Paralleloptische Übertragungen wie Infiniband mit Übertragunsgraten von bis zu 120 Gb/s und die kommenden Ethernetvarianten 40Gb/s und 100Gb/s Ethernet werden im Bereich der Multimodeanwendung nicht über Einzelfasern übertragen sondern über den MPO.

Spleißverbindungen

Siehe auch: Hauptartikel Spleißen

Das Verspleißen von Glasfasern ist eine sichere und verlustarme Verbindungsmethode, erfordert jedoch eine spezielle Ausrüstung und Erfahrung. Die Enden müssen vor dem Verspleißen plan zugerichtet und genau zueinander positioniert werden. Dann folgt eine Aufschmelzung der Faserenden durch einen kurzzeitigen Lichtbogen. Während des Aufschmelzens werden die Glasfaserenden ohne zusätzliches Fügemittel aneinandergeschoben. Danach wird die bruchempfindliche Spleißstelle mit einem Spleißschutz mechanisch und vor Feuchtigkeit geschützt. Die Erstellung einer lösbaren Verbindung, um zum Beispiel innerhalb eines Verteilerfeldes Rangiermöglichkeiten zwischen verschiedenen Strecken zu ermöglichen, erfolgt durch das verspleissen eine Pigtails mit der Verlegefaser. Ein Pigtail ist ein Lichtwellenleiter, der auf der einen Seite einen konfektionierten Stecker hat.

Glasfasermuffe

Glasfasermuffen enthalten mehrere Spleißverbindungen und verbinden zwei oder mehr Kabel mit jeweils mehreren Fasern bzw. LWL miteinander. Hierfür müssen die Glasfaserkabel einzeln gestrippt, verspleißt und in Kassetten eingelegt werden. Diese dienen dazu, dass bei evtl. Störungen einer Faser die restlichen Fasern unbeeinflusst bleiben. Eine Muffe kann über 200 einzelne Fasern aufnehmen, was mehrere Tage Installationszeit beanspruchen kann.

Daneben gibt es Spleißverbindungen sogenannter Ribbon- oder Bändchenkabel. Bei diesen Kabeln sind als Einzelelement bis zu zwölf Glasfasern in einer Klebematrix bandförmig nebeneinander untergebracht. Die zugehörigen Kabel beinhalten bis zu 100 solcher Bändchen, d. h. bis zu 1200 Glasfasern. Die entsprechende Spleißtechnik verspleißt immer die gesamten Bändchen miteinander, d. h. vier, sechs oder zwölf Glasfasern gleichzeitig mittels Lichtbogen.

Steckerverbindungen

Neben dem Verspleissen von Lichtwellenleitern mittels eines Lichtbogens und Pigtails existieren diverse weitere Möglichkeiten Stecker auf den Lichtwellenleiter aufzubringen. Die heute gebräuchlisten Arten sind die Klebe und Poliertechnik oder der mechanische Spleiss. Die Klebe und Poliertechnik ist durch anaerobe Kleber oder Heissklebeverfahren möglich. In den Steckerkörper (Ferrulle) wird hierzu ein Kleber eingebracht, die Faser durch die Ferrulle geführt und gewartet bis der Kleber erhärtet ist. Danach wird die Faser mittels einer Klinge angeritzt, folgend gebrochen und die Stirnfläche des Steckers plan geschliffen und poliert. Beim mechanischen Spleiss wird hingegen ein Steckertype verwendet, der werksseitig schon in der Ferrulle eine Faser eingeklebt hat und die Strinflächen maschinell geschliffen und poliert wurden. Das offene Faserende befindet sich innerhalb des Steckerkörpers in einer mit Index-Matching Gel gefüllten Kammer. Rückwärtig wird dann die zu konfektionierende Faser lediglich sauber gebrochen und in diese Kammer eingeführt. Die Fixierung erfolgt durch zum Beispiel einen Cam mittels Exzenterverschluss. Das Index Matching Gel hat die Aufgabe den bestehenden Luftspalt zwischen den beiden Faserenden durch ein Medium zu ersetzen, das den gleichen Brechungsindex wie der Lichtwellenleiter selber hat.

Weitere Technologien

In optischen Bauelementen finden sich auch Abzweige und Zusammenführungen von Fasern. Weiterhin gibt es Umschalter für mehrere Fasern. Diese können mechanisch oder optisch/berührungslos arbeiten.

Anwendung der Lichtwellenleiter

Anwendung in der Nachrichtenübertragung

Glasfaserkabel werden in der Nachrichtentechnik zur Informationsübertragung über weite Strecken mit hoher Bandbreite verwendet. Mit Singlemode-Fasern können Strecken bis 30 km ohne Repeater (Regeneration, Zwischenverstärkung) überbrückt werden.

Als Aus- und Eingangsverstärker sowie Repeater werden mit Diodenlasern gepumpte Erbium-Faser-Verstärker (EDFA, engl. erbium doped fibre amplifier) verwendet. Die Verstärkung erfolgt wie in einem Laser durch stimulierte Emission, jedoch ohne Rückkopplung.

In Datenübertragungsnetzen kommen Glasfaserkabel heute fast bei jedem Netzwerk-Standard zum Einsatz. Ein Standard für lokale Computernetze, der auf Glasfaserkabeln aufbaut, ist zum Beispiel das Fiber Distributed Data Interface (FDDI). Im Weitverkehrsbereich sind Glasfaserkabel insbesondere in der Verwendung als interkontinentale Seekabel ein enormer Fortschritt. Die Steuerung des Datenverkehrs über Glasfaserkabel ist in den HFC-Standards definiert.

Dark Fibre (dt. „dunkle Faser“) ist eine LWL-Leitung, die unbeschaltet verkauft oder vermietet wird. Der Lichtwellenleiter ist dabei zwischen zwei Standorten Punkt zu Punkt durchgespleißt. Für die Übertragung und die Übertragungsgeräte ist der Käufer oder Mieter verantwortlich. Er bestimmt auch die Verwendung. Dieses Geschäftsmodell wird auch mit Carriers Carrier oder Wholesale Business bezeichnet. Da es sich um eine reine Infrastrukturleistung handelt, unterliegt dieser Vertrag nicht dem Telekommunikationsgesetz.

Um Störungen bei Erdarbeiten oder Erweiterungen möglichst zu umgehen, sind in den Kabeln redundante Fasern enthalten. Auch nicht genutzte Glasfaserkapazitäten bezeichnet man als Dark Fibre, da bei unbenutzten Glasfasern keine Lichtsignale übertragen werden. Die Faser ist dann dunkel. Bei Bedarf werden weitere Fasern in Betrieb genommen.

Einzelne Fasern werden auch an andere vermietet:

  • an Unternehmen und Organisationen, die ein WAN oder ein GAN aufbauen wollen.
  • an andere Telekommunikationsunternehmen, die damit Teilnehmer anschließen können, zu deren Räumlichkeiten sie kein eigenes Kabel liegen haben (Erschließung der „letzten Meile“).

In den letzten Jahren wird vor allem in Japan, USA, Italien und in Skandinavien der Ausbau von Glasfasernetzen im Anschlussbereich vorangetrieben. So werden dort Häuser direkt mit Glasfasern angeschlossen. Diese Vorgehensweise wird unter dem Begriff Fiber To The Home (FTTH) zusammengefasst. Bei diesem Ausbau werden pro Gebäude ein bis zwei Fasern verlegt. Werden zwei Fasern verlegt, so ist eine Faser für den Download, die andere für den Upload. Wird nur eine Faser verlegt, so läuft der Download über die Wellenlänge 1310 nm, während der Upload über 1550 nm realisiert wird.

Fasern in Weitverkehrsnetzen (zum Beispiel deutschlandweite Netze, Ozeanverbindungen) werden im DWDM-Verfahren betrieben, das enorme Übertragungskapazitäten ermöglicht. Dabei werden über mehrere Laser auf verschiedenen Wellenlängen Signale eingekoppelt und gleichzeitig auf einer Faser übertragen. Man hat somit verschiedene Kanäle auf einer Faser, ähnlich wie beim Radio. Mit Hilfe der breitbandig verstärkenden EDFAs ist ein Bandbreite-mal-Länge-Produkt von mehr als 10.000 (Tbit/s)·km möglich. Diese Systeme der 4. Generation wurden verstärkt Mitte der 1990er-Jahre verbaut und sind bis heute Stand der Technik.

Anwendung in der HiFi-Consumer/Studiotechnik

Anfang der 1990er-Jahre, wurden D/A Wandler und CD-Player angeboten die mittels dieser Technik, über eine ST Verbindung kommuniziert haben. Gerätebeispiele anhand eines Parasound DAC 2000, WADIA DAC, Madrigal Proceed PDP 3 mit CD-Transport PDT 3. Diese Art der Verbindung konnte sich allerdings gegen TOSLINK nicht durchsetzen und fand deshalb recht selten Verwendung.

Weitere Anwendungen

Potentialgetrennte Signalübertragung

Glasfaserkabel werden zur stromlosen Signalübertragung eingesetzt, z. B.

  • bei Leistungselektronik- und Hochspannungs-Anlagen, um Steuersignale z. B. zu den auf Hochspannungspotential befindlichen Thyristoren zu übertragen. Es ist sogar möglich, die Stromrichterthyristoren direkt über die in der Glasfaser übertragenen Lichtpulse zu zünden (siehe Optothyristor).
  • zur Übertragung von Messsignalen in Hochspannungsanlagen oder in störender Umgebung
  • in Audio-Anlagen, um Signalstörungen durch Masseschleifen zu vermeiden
  • zur galvanisch getrennten Netzwerkanbindung von medizinischen Geräten (z. B. digitales Röntgengerät) an lokale Netzwerke.

Messtechnik

Eine weitere Anwendung ist die Messtechnik, bei der die auszuwertende Strahlung zwischen einem Messkopf und der Auswertelektronik mit einem LWL übertragen wird. Man kann dadurch unter Extrembedingungen messen, die die Elektronik nicht aushalten würde, wenn sie ohne die räumliche Trennung durch den LWL mit dem Messobjekt in Berührung käme. Die bekannteste Anwendung solcher Anordnungen sind Temperaturmesser und -regler in Stahl- und Glaswerken. Auch Spektrometer haben oft LWL-Eingänge.

Glasfasern können auch als Sensoren verwendet werden:

  • verschiedene Temperaturen entlang der Faser führen zu auswertbaren optischen Beeinflussungen (Rayleigh- und Raman-Rückstreuung) – es können ortsaufgelöst Temperaturen bestimmt werden (Faseroptische Temperaturmessung, engl. distributed temperature sensor, DTS).
  • in Laser-Gyroskopen wird eine aufgewickelte Faser als Sensor für die Winkelgeschwindigkeit verwendet.

Hochleistungslaser

Die Strahlung von Hochleistungs-Lasern im nahen Infrarot (Einsatz u. a. zur Materialbearbeitung) wird oft in Lichtleitkabeln (LLK) geführt, um sie besser an den Wirkungsort heranführen zu können. Es können Leistungen bis zu mehreren Kilowatt in Fasern mit 0,02–1,5 mm Kerndurchmesser nahezu verlustfrei übertragen werden. Um Unfälle zu vermeiden, sind derartige Fasern mit einer Faserbruchüberwachung ausgestattet.

Steckverbindungen derartiger Fasern sind prinzipiell anders aufgebaut als diejenigen der Nachrichtenübertragung: Sie müssen hohe thermische Verlustleistungen aufgrund der Streustrahlung und ggf. Rückreflexionen vertragen. Verbindungen der Fasern werden grundsätzlich vermieden. Die Faserendflächen sind plan und ragen frei ohne Einbettung heraus. Teilweise werden sie an einen Kieselglasblock gepresst, um Verunreinigungen der Endflächen zu vermeiden. Aufgrund der hohen Leistungsflussdichten führen kleinste Verunreinigungen zur Zerstörung. Antireflexbeschichtung der Endflächen ist aus diesem Grund ebenfalls nicht möglich. Bis etwa 500 Watt Laserstrahlleistung sind SMA-Steckverbindungen möglich, wobei die Faser jedoch nicht bis zum Ende eingebettet ist.

Dotierte Fasern (z. B. mit Erbium) können selbst als Laser oder Licht-Verstärker arbeiten (siehe Faserlaser). Hierzu werden sie optisch mittels Hochleistungs-Diodenlasern gepumpt. Diese Technik findet sowohl in der Nachrichtentechnik als auch im Hochleistungsbereich Verwendung.

In der Lasershowtechnik wird Laserlicht von einer zentralen Quelle über Lichtleitkabel zu verschiedenen im Raum verteilte Projektoren geleitet. Die Leistungen betragen hier einige hundert Milliwatt bis zu zweistelligen Wattbeträgen.

Anzeigen und Dekoration

Zu Beleuchtungs- und Dekorationszwecken werden Fasern oder Faserbündel aus mineralischem oder organischem Glas (Plastwerkstoffe, z. B. (PMMA, Polycarbonat)) eingesetzt:

  • Übertragung des Lichtes einer Signal-LED von der Platine zur Anzeigetafel
  • Mikroskop-Lichtquellen (Schwanenhals): ein manipulierbares Faserbündel wird mit einer Halogen-Glühlampe gespeist
  • „Sternenhimmel“: mehrere Fasern werden vor der Verteilung als Bündel mit einer Halogen-Glühlampe und einem Filterrad beleuchtet

Vor- und Nachteile von Lichtwellenleitern

Vorteile
  • hohe Übertragungsraten (Gigabit- bis Terabit-Bereich, selbst in alten Installationen)
  • sehr große Reichweiten durch geringe Dämpfung (bis mehrere hundert Kilometer)
  • kein Nebensprechen (ungewollte Signaleinstreuung auf benachbarte Fasern)
  • keine Beeinflussung durch äußere elektrische oder elektromagnetische Störfelder
  • keine Erdung nötig
  • Verlegbarkeit in explosionsgefährdetem Umfeld (keine Funkenbildung)
  • Möglichkeit zur Signalübermittlung an auf Hochspannungspotential liegenden Komponenten, zum Beispiel bei Anlagen der Hochspannungs-Gleichstrom-Übertragung
  • wesentlich leichter als Kupferkabel
  • wesentlich weniger Platzbedarf als Kupferkabel
  • Rohstoffe – im Gegensatz zu Kupfer – praktisch unbegrenzt verfügbar
  • keine Brandauslösung durch parasitäre elektrische Ströme (z. B. Blitz, Kurzschluss) möglich
  • geringere Brandlast im Vergleich zu Kupferkabeln durch kleineren Bedarf an Isolierung und geringere Wärmeentwicklung
  • hohe Abhörsicherheit
  • im Bereich der Produktions- und Automatisierungstechnik wird die Führung von Laserstrahlung zur Materialbearbeitung wesentlich vereinfacht (z. B. ber der Verwendung von Industrierobotern)
Nachteile
  • hoher Konfektionierungsaufwand (Installation durch Spezialfirmen)
  • Schwachstelle Steckertechnik (Verschmutzung, Justage)
  • relativ empfindlich gegenüber mechanischer Belastung
  • teure Gerätetechnik
  • aufwendige und komplexe Messtechnik
  • nicht einfach zu verlegen: Bei starker Krümmung kann die Faser im Kabel brechen
  • über einen LWL können Geräte nicht mit Strom versorgt werden, Power over Ethernet ist also nicht möglich
Mögliche Störungen
  • Dämpfung durch
    • Spleiße dämpfen um 0,02 bis 0,2 dB
    • Einschlüsse
    • Deformierung des Kernes dämpft um 2 bis 5 dB/km (Kompensation der Dämpfung in der Nachrichtentechnik durch Optische Verstärker möglich.)
    • Unterschreitung der minimalen Biegeradien, ein Teil des Lichtes tritt über das Caldding aus und wird nicht mehr reflektiert.
  • Faserbruch (Unfallgefahr, insbesondere bei den dicken LWL für Hochleistungslaser)
  • Dispersion
    • Monomode-Faser: Dispersion kann jedoch durch dispersionskompensierende Fasern kompensiert werden, dadurch sehr großes Bandbreitenlängenprodukt.
    • Multimode-Faser: Dispersion ist entsprechend groß, daher ist das Bandbreitenlängenprodukt klein.

Abhörmethoden

  • am Spleiß (mittels eines Lichtbogenspleißgerätes werden zwei Faserenden genau zueinander justiert und thermisch verschmolzen.) Der Dämpfungswert liegt bei 0,03 dB, gute Spleiße liegen sogar unter 0,02 dB. Dennoch tritt Strahlung aus, die ausgewertet werden kann
  • Coupler-Methode: wird eine Glasfaser gebogen, folgt das durchströmende Licht größtenteils der Biegung (bending) – ein Teil des Lichtes strahlt jedoch aus der Faser heraus, schon 2 % des Lichtsignals enthalten alle übertragenen Informationen. Aufgrund der damit unvermeidlich verbundenen Dämpfung grundsätzlich nachweisbar.
  • Non-touching-Methode – Empfindliche Photodetektoren fangen die minimalen Lichtmengen auf, die auf natürliche Weise seitlich aus der Faser strahlen (sog. Rayleigh-Streuung). Das Signal wird dann bis zu einer brauchbaren Stärke verstärkt. Weder die Leitung noch das Signal werden dabei nennenswert gedämpft. Die Deutsche Telekom hat sich eine ähnliche Methode patentieren lassen, mit der sich Signale aus einer Glasfaser ohne messbare Beeinflussung oder Dämpfung der Glasfaser auffangen lassen.[1]

Normen

Die Lichtwellenleiter sind nach VDE 0888-2, ITU-T G.651 bis G.657 und IEC 60793 genormt.

Literatur

Physikalische Grundlagen

  • Fedor Mitschke: Glasfasern : Physik und Technologie. Elsevier, Spektrum, Akad. Verlag, Heidelberg 2005, ISBN 3-8274-1629-9
  • Govind P. Agrawal: Nonlinear Fiber Optics (Optics and Photonics). Academic Press, ISBN 0-12-045143-3
  • Dieter Meschede: Optik, Licht und Laser. Teubner, ISBN 3519132486

DAS IST EIN TEST

Technik

  • Dieter Eberlein: Lichtwellenleiter-Technik. Expert Verlag, Dresden 2003, ISBN 3-8169-2264-3
  • Holger Ueker: Moderne Übertragungstechniken. Medien-Institut, Bremen 2004, ISBN 3-932229-72-X
  • Christoph P. Wrobel: Optische Übertragungstechnik in der Praxis: Komponenten, Installation, Anwendungen. Hüthig, Bonn 2004, ISBN 3-8266-5040-9

Einzelnachweise

  1. (Patentfamilie EP0915356B1, Patentschrift, Patentregister des EPA