Dieser Artikel wurde in die Qualitätssicherung der Redaktion Physik eingetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.
Elektronen sind analog zu verschieden starken Federn (Anisotropie) an den Atomkern gebunden
Die Dynamik von Elektronen, Ionen oder permanenten Dipolen in einem Festkörper kann vereinfacht durch einen gedämpftenharmonischen Oszillator beschrieben werden. Die folgende Bewegungsgleichung sei ohne Beschränkung der Allgemeinheit für Elektronen aufgestellt. Für Ionen und permanente Dipole lassen sich analoge Gleichungen aufstellen. Modellhaft kann man sich vorstellen, die Elektronen in der Atomhülle seien im Lorentzmodell mit Federn am Atomkern befestigt. Haben die Federn aller Elektronen die gleiche Federkonstante entspräche das einem isotropen Medium. Als periodische Antriebskraft geht die Wechselwirkung mit einem monochromatischenelektromagnetischenWechselfeld, z. B. Licht, Radio- oder Mikrowellen, ein:
Real- und Imaginärteil der dielektrischen Funktion in Abhängigkeit von der Kreisfrequenz des treibenden Feldes
Real- und Imaginärteil der dielektrischen Funktion im visuellen Bereich für einen Halbleiter (Silicium) mit Bandübergängen in diesem Bereich; im Gegensatz zum oberen Bild ist hier als horiz. Achse die Wellenlänge aufgetragen
Die Frequenzabhängigkeit der dielektrischen Funktion, des Brechungsindex sowie des Absorptionskoeffizienten werden im Wesentlichen korrekt wiedergegeben.
Reale Materialien weisen stets mehr als nur eine Resonanzfrequenz auf, da mehrere elektronische Übergänge existieren; jeder von ihnen liefert gemäß seiner Oszillatorstärke einen Beitrag zur elektronischen Polarisierbarkeit
Bei Festkörpern spielt die Aufspaltung in Energiebänder (Bandstruktur) eine wichtige Rolle bezüglich der möglichen Übergänge.