Neutronenstrahlung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Neutronenstrahlung ist eine ionisierende Strahlung, die aus freien Neutronen (mit u. U. verschiedenen kinetischen Energien) besteht.

Da Neutronen elektrisch neutral sind, haben die Ladungen von Atomkernen und Elektronen auf ihre Bewegung keinen Einfluss. Neutronenstrahlung durchdringt Materie deshalb relativ leicht. Der ionisierende Effekt entsteht indirekt, meist durch Anstoßen leichter Atomkerne bzw. deren Bestandteile (z. B. Protonen), die dann ihrerseits ionisierend wirken. Durch derartige Stöße werden die Neutronen energieärmer (langsamer).

Die Hauptwirkung von langsamen, vor allem thermischen Neutronen beruht auf ihrer Fähigkeit, sich an Atomkerne anzulagern (Neutroneneinfang). Dabei bildet sich ein Isotop des einfangenden Atoms mit einer um 1 erhöhten Massenzahl. Viele dieser so entstandenen Isotope sind radioaktiv, so dass noch sehr lange nach einer Neutronenbestrahlung (je nach Halbwertszeit des Isotops) durch den Zerfall ionisierende Strahlung auftreten kann. Der freie Zustand des Neutrons endet nach kürzester Zeit immer mit dem Neutroneneinfang oder einer anderen Kernreaktion. Nur im Hochvakuum hat ein freies Neutron die „Chance“, seinen eigenen radioaktiven Zerfall zu erleben.

Quellen[Bearbeiten | Quelltext bearbeiten]

Die kosmische Strahlung setzt in der Atmosphäre oder am Boden durch Wechselwirkung mit Molekülen natürliche Neutronenstrahlung frei. Durch natürlichen Zerfall von Atomkernen entsteht Neutronenstrahlung selten; man stellt sie künstlich mit Hilfe von Neutronenquellen her. Im Kernreaktor werden bei der Kernspaltung Neutronen freigesetzt, ebenso bei der Kernfusion.

Eine weitere starke Quelle sind Neutronenbomben. Sie kann mit Hilfe von Neutronenstrahlung Personen im Zielgebiet töten, aber Gebäude und Infrastruktur relativ unbeschädigt lassen.

Nutzung[Bearbeiten | Quelltext bearbeiten]

In der Materialforschung werden Neutronenstrahlen eingesetzt, um die atomare oder molekulare Struktur von Festkörpern zu bestimmen (Neutronenstreuung). Zur Überwachung der Unterkritikalität eines Kernreaktors kann die Neutronenstrahlung z. B. einer Radium-Beryllium-Neutronenquelle verwendet werden. Bei der Strahlentherapie wurde versucht, Krebszellen mit Neutronenstrahlen abzutöten; wegen der Nebenwirkungen im gesunden Gewebe wird dies nur noch selten angewandt.

Schädliche Wirkung auf Lebewesen[Bearbeiten | Quelltext bearbeiten]

Die wichtigste Schadwirkung schneller Neutronen in lebendem Gewebe ist die elastische Streuung an Wasserstoff. Sie erzeugt Rückstoßprotonen, die ihrerseits stark ionisierend und damit im Gewebe schädlich wirken. Eine indirekte Schädigung durch thermische Neutronenstrahlung kommt durch die Gammastrahlung zustande, die beim Einfang des Neutrons an Wasserstoff entsteht: 1H + n → 2H + 2,2 MeV.

Die Schädlichkeit von Neutronenstrahlung wird durch die hohen Strahlungswichtungsfaktoren der deutschen Strahlenschutzverordnung mit Werten von 5 bis 20 berücksichtigt.

Schnelle wie auch thermische Neutronenstrahlung kann stabile Atomkerne durch Kernreaktionen in radioaktive Atomkerne umwandeln – die sogenannte Aktivierung.

Abschirmung[Bearbeiten | Quelltext bearbeiten]

Eine Abschirmung gegen Neutronenstrahlung nutzt meist eine Kombination physikalischer Effekte und ist aus mehreren Materialien aufgebaut: Ein Moderator, zum Beispiel Wasser, Paraffin oder Kunststoff, bremst schnelle freie Neutronen ab. Langsame (thermische) Neutronen werden von beispielsweise Cadmium oder Bor absorbiert. Die begleitende Gammastrahlung wird durch eine Schicht aus Blei reduziert.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Neutronenstrahlung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen