Reversible Brennstoffzelle

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Reversible Brennstoffzellen (engl. reversible fuel cell, RFC) sind Brennstoffzellen, deren energieliefernder Arbeitsprozess umkehrbar ist.

Thermodynamische Grundlagen[Bearbeiten]

Da nach dem Energieerhaltungssatz (1. Hauptsatz der Thermodynamik) keine Energie verschwinden kann und bei chemischen Reaktionen auch immer Entropieänderungen auftreten, muss eine reversible Brennstoffzelle diese Entropieänderungen durch einen reversiblen Wärme- oder Energietransport über die Systemgrenzen der Zelle hinweg ausgleichen können.[1]

Als Grundvoraussetzung muss gefordert werden, dass die Brennstoffzelle ihre maximale, reversible Arbeit bei der Verbrennungsreaktion leistet. Es gilt bei einer bekannten Temperatur der Zelle nach dem zweiten Hauptsatz der Thermodynamik:

\Delta^r S \!\,-\frac{q_{BZrev}}{T_{BZ}}=0, mit \Delta^r\!\, S Entropieänderung der Brennstoffzelle (BZ), q_{\!\,BZrev} Reversible Wärme der BZ und T_{\!\,BZ} Temperatur der BZ

Da nach dem ersten Hauptsatz der Thermodynamik für die Reaktionsenthalpie \Delta\!\,^r H gilt:

q_{BZrev} + w_{tBZrev} = \Delta^r\!\,H, mit w_{\!\,tBZrev} Reversible Arbeit der BZ,

folgt daraus durch Kombination der beiden obigen Gleichungen für die reversible Arbeit:

w_{\!\,tBZrev} = \Delta^r\!\,H - T_{BZ} \cdot \Delta^r\!\,S [1]

Die reversible Arbeit hängt also neben der eigentlichen Reaktionsenthalpie auch direkt von der Temperatur und der Änderung der Reaktionsentropie ab.

Beispiel Wasserstoff-Brennstoffzelle[Bearbeiten]

Schematischer Aufbau einer PEM-Brennstoffzelle

Eine Wasserstoff-Brennstoffzelle verbraucht Wasserstoff (H2) und Sauerstoff (O2) zur Erzeugung von Elektrizität und Wasser (H2O); als reversible Brennstoffzelle muss sie nun per Elektrolyse aus Wasser auch wieder Wasserstoff und Sauerstoff produzieren. Dazu wird ein Elektrolyseur mit der Brennstoffzelle kombiniert.[2]

Reversibler Prozess in einer Wasserstoff-Brennstoffzelle :

 \mathrm{ 2 \ H_2 \ + \ O_2 \ \ \longrightarrow \ 2\ H_2O + \ \Delta H  }
Reaktion von Wasserstoff mit Sauerstoff zu Wasser unter Energieabgabe
 \mathrm{ 2\ H_2O \ \xrightarrow{Elektrolyse} 2\ H_2 + O_2 }
Elektrolyse von Wasser zu Wasserstoff und Sauerstoff unter Energiezufuhr

Eine weitere mögliche Anwendung ist die Energiespeicherung mittels des Power-to-Gas-Prozesses. Zur Verringerung der Komplexität dieses Systems und zur Verkleinerung werden auch reversible Brennstoffzellen untersucht, die sowohl als Elektrolyseur als auch als Brennstoffzelle arbeiten können (unitized regenerative fuel cell, kurz URFC). Für diesen Zweck werden derzeit Polymerelektrolytbrennstoffzellen und Festoxidbrennstoffzellen eingesetzt.[2] Erste Anlagen wurden kürzlich (Stand 2015) in den Markt eingeführt.[3]

Der Einsatz von reversiblen Brennstoffzellen ermöglicht verglichen mit herkömmlichen Technologien zur Brenngasherstellung mittels Elektrolyse bei gutem Abwärmemanagement deutlich höhere Strom-zu Strom-Wirkungsgrade bis etwa 70 % und niedrigere Kosten.[4]

Daneben kann eine reversible Brennstoffzelle mit einem Brennstoffspeicher oder durch Anschluss an ein Verteilnetz einen Akkumulator ersetzen, wodurch ein deutlich niedrigeres und günstigeres Leistungsgewicht erreicht werden kann, jedoch mit geringerem Wirkungsgrad.

Einzelnachweise[Bearbeiten]

  1. a b W. Winkler: Brennstoffzellenanlagen. S. 14–22, Springer, 2002, ISBN 9783540428329
  2. a b Fraunhofer ISE: Reversible Brennstoffzellen - Langzeitspeicher für elektrische Energie.
  3. Alberto Varone, Michele Ferrari, Power to liquid and power to gas: An option for the German Energiewende. In: Renewable and Sustainable Energy Reviews 45, (2015), 207–218, S. 209, doi:10.1016/j.rser.2015.01.049.
  4. Jensen et al, Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4. In: Energy and Environmental Science (2015), doi:10.1039/c5ee01485a.

Weblinks[Bearbeiten]