Stickstofffixierung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Schematische Darstellung des Stickstoffkreislaufs in der Natur

Unter Stickstofffixierung versteht man allgemein jegliche Umwandlung des chemisch inerten elementaren, molekularen Stickstoffs (N2). Sie ist ein wichtiger Teil des Stickstoffkreislaufs.

Man unterscheidet:

Die Stickstofffixierung ist zu unterscheiden von der Ammoniumfixierung, der Bindung von positiv geladenen Ammoniumionen an negativ geladene Tonminerale im Boden (siehe dazu Nährstoff (Pflanze) und Kationenaustauschkapazität).

Nach Schätzungen werden pro Jahr ca. 200–300 Millionen Tonnen N2 biologisch fixiert, davon etwa ein Drittel in den Ozeanen. Die symbiontischen Knöllchenbakterien sollen etwa 50–150 kg Stickstoff pro Jahr und Hektar und die freilebenden Bakterien nur 1–3 kg Stickstoff pro Hektar und Jahr fixieren. Im Vergleich dazu beträgt die chemische Fixierung (Haber-Bosch-Verfahren) von N2 nur ca. 30 Millionen t pro Jahr[1].

Geschichte[Bearbeiten]

Der russische Mikrobiologe Winogradski erbrachte erstmals den Nachweis der Stickstoffbindung bei einer Kultur von Clostridium pasteurianum (Bacillus amylobacter)[2](veraltete Namen für Clostridium butyricum siehe dazu Buttersäuregärung).

Biotische Stickstofffixierung[Bearbeiten]

Durch einige Mikroorganismen wird elementarer, molekularer Stickstoff (N2) zu Verbindungen reduziert, die reaktiver und insbesondere bioverfügbar sind. Der Prozess ist aufgrund der sehr stabilen Dreifachbindung molekularen, elementaren Stickstoffs mit 946 Kilojoule je Mol (kJ/mol) sehr energieaufwändig.

\mathrm{N_2 + 8 \ H^+ + 8 \ e^- \longrightarrow 2 \ NH_3 + H_2 \!}

Mikroorganismen, die Stickstoff fixieren können (Stickstofffixierer), sind entweder freilebend oder leben in Symbiose mit Pflanzen. Bekannte freilebende Vertreter sind die Gattungen Azotobacter, Azomonas und Cyanobakterien (früher Blaualgen genannt), letztere fixieren den Stickstoff oft in spezialisierten Zellen, sogenannten Heterozysten.

Weitere wären beispielsweise[2]: [[Aerobacter]], Achromobacter, Bacillus polymixa (siehe Bacillus), Pseudomonas, Clostridium pasteurianum (veralteter Namen für Clostridium butyricum siehe dazu Buttersäuregärung), Methanobacterium (siehe Methanbildner), Desulfovibrio, Rhodospirillum, Chromatium (siehe Schwefeloxidierende Bakterien), Chlorobium (siehe Grüne Schwefelbakterien), Rhodomicrobium (siehe Eisenoxidierende Mikroorganismen), Anabaena, Calothrix, Nostoc und Tolypothrix.

Die bekanntesten symbiotisch lebenden Stickstofffixierer sind Knöllchenbakterien (beispielsweise bei Leguminosen) und Frankia (bei verholzenden Pflanzen wie Erlen).

Da die Stickstofffixierung für die Lebewesen sehr energieaufwändig ist, wird sie streng reguliert und kommt nur zur Anwendung, wenn das Lebewesen keine andere Möglichkeit zur Stickstoffversorgung hat.

Die Spurenelemente Molybdän und Vanadium (und Wolfram als Ersatzstoff) wurden als notwendige Agentien für die Stickstoff-Fixierung durch Acetobacter eruiert[3][4], zitiert auch bei Blanck[5].

Siehe auch: Diazotrophie

Von einigen Autoren wurde Stickstoff-Fixierung zur körpereigenen Protein-Biosynthese auch bei Insekten (bei Blattläusen und Gleichflüglern) nachgewiesen.[6]

Abiotische Stickstofffixierung[Bearbeiten]

Durch Blitzschlag bei Gewittern, Verbrennung und Vulkane: aus Stickstoff und Sauerstoff der Luft entstehen Stickoxide, die mit Wassertröpfchen in der Atmosphäre zu Salpetriger Säure bzw. Salpetersäure reagieren und als Saurer Regen in den Boden gelangen.

 \mathrm{ N_2 + O_2 \quad \rightarrow \quad 2\,NO }
 \mathrm{ 4\,NO + 3\,O_2 + 2\,H_2O \quad \rightarrow \quad 4\,HNO_3 }

Technische Stickstofffixierung[Bearbeiten]

Nach dem Haber-Bosch-Verfahren kann N2 reduziert werden. Der Prozess benötigt eine Temperatur von 500 °C, einen Druck von 450 bar und Katalysatoren. Die Reduktion ist ähnlich wie unter (2). Meist wird dieser Ammoniak in nitrathaltige Düngemittel umgesetzt.

Bei der Azotierung wird Stickstoff zur Darstellung von Kalkstickstoff gemäß folgender Reaktionsgleichung fixiert:

\mathrm{CaC_2 + N_2 \longrightarrow \  Ca(CN)_2} \mathrm{\longrightarrow  \ Ca^{2+}\ + \ ^-N{=}C{=}N^- \ + C}

Trivia[Bearbeiten]

Beim Jugendwettbewerb Jugend innovativ erreichte das Projekt "Cyanobakterien - Dünger aus der Luft", das sich mit der Züchtung von Blaualgen als Rohstoff für Biodünger beschäftigte, 2009 den Platz 1 in der Sonderkategorie Klimaschutz[7]. Der seit mehr als 25 Jahren jährlich stattfindende innovative Jugendwettbewerb[8] für junge Menschen im Alter von 15 bis 20 Jahren wird vom österreichischen Wirtschaftsministerium und Unterrichtsministerium finanziert[9].

Weitere Bedeutung[Bearbeiten]

Zudem wird mit Stickstofffixierung die Festlegung des Bodenstickstoffs in der organischen Substanz bezeichnet, wenn ein ungünstiges Kohlenstoff-Stickstoff-Verhältnis (C/N-Verhältnis) vorliegt. Der Grund liegt hierbei im Stickstoffbedarf der abbauenden Mikroorganismen. So lässt sich bei der Ausbringung stickstoffarmer Mulchmaterialien wie Sägespäne, Holzhäcksel oder Rindenhäcksel ein Stickstoffmangel der Kulturpflanzen beobachten. Daher kann es günstig sein, solche Materialien vorher zu kompostieren, oder zusätzlich einen Stickstoffdünger zu geben. Der gebundene Stickstoff wird mit dem Abbau der organischen Stoffe langfristig wieder freigesetzt.

Literatur[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Stickstofffixierung bei www.spektrum.de/lexikon/biologie/
  2. a b Ruth Beutler: Der Stoffwechsel. Springer-Verlag, 2013, ISBN 978-3-662-37018-6, S. 988 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. H.Bortels: Molybdän als Katalysator bei der biologischen Stickstoffbindung,  Archives of Microbiology, 1(1):333–342, Januar 1930, veröffentlicht bei springer.com und www.researchgate.net
  4. H.Bortels: Über die Wirkung von Molybdän- und Vanadiumdüngungen auf Azotobacterzahl und Stickstoffbindung in Erde, veröffentlicht bei springer.com
  5. E. Blanck: Handbuch der Bodenlehre. Springer-Verlag, 2013, ISBN 978-3-642-99617-7, S. 525 (eingeschränkte Vorschau in der Google-Buchsuche).
  6. L.Tóth, A.Wolski, M.Bátori: Stickstoffbindung aus der Luft bei den Aphiden und bei den Homopteren (Rhynchota insecta), Ungarisches Biologisches Forschungsinstitut, 1942, veröffentlicht und einsehbar bei springer.com
  7. Cyanobakterien - Dünger aus der Luft, Website der HTL Braunau
  8. Bundesministerium für Wissenschaft und Forschung: Festschrift 25 Jahre Jugend innovativ 1987–2012, (PDF)
  9. http://www.bmwfw.gv.at/Innovation/Initiativen/Seiten/JugendInnovativ.aspx Website des Bundesministerium für Wissenschaft und Forschung]