Strukturgleichungsmodell

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Begriff Strukturgleichungsmodell (englisch structural equation modeling, kurz SEM) bezeichnet ein statistisches Modell, das das Schätzen und Testen korrelativer Zusammenhänge zwischen abhängigen Variablen und unabhängigen Variablen sowie den verborgenen Strukturen dazwischen erlaubt. Dabei kann überprüft werden, ob die für das Modell angenommenen Hypothesen mit den gegebenen Variablen übereinstimmen. Es wird den strukturprüfenden multivariaten Verfahren zugerechnet und besitzt einen konfirmatorischen (bestätigenden) Charakter. Ansätze der Strukturgleichungsmodellierung können grundlegend in kovarianzbasierte (z. B. Amos und LISREL) und varianzbasierte (z. B. Partial Least Squares, PLS) Verfahren unterschieden werden, die Gemeinsamkeiten und Unterschiede aufweisen.[1]

Geschichte[Bearbeiten | Quelltext bearbeiten]

Grundlegende Überlegungen gehen auf Sewall Wright (1921) bzw. (1923),[2] Trygve Haavelmo (1943)[3] und Simon (1977) zurück. Der Ansatz der Kovarianzstrukturanalyse geht im Wesentlichen auf Karl G. Jöreskog (1973)[4] zurück. Der PLS-Ansatz zur Schätzung von sogenannten Kausalmodellen wurde ursprünglich von Herman O. A. Wold (1982)[5] entwickelt. Die kovarianzbasierte Strukturgleichungsmodellierung war über viele Jahre das etablierte und damit dominante Verfahren. In den letzten Jahren ist der Einsatz der varianzbasierten Strukturgleichungsmodellierung immer beliebter geworden, was zahlreiche Studien zu dem Einsatz des Verfahrens in verschiedenen Disziplinen zeigen.[6][7][8]

Modellelemente[Bearbeiten | Quelltext bearbeiten]

Strukturgleichungsmodell mit der latenten Variable „Intelligenz“
  • Indikator (Item): Hierbei handelt es sich um beobachtete Variablen. Beispielsweise sind Indikatoren für „Intelligenz“ die „Abschlussnote im Abitur“, der „Intelligenzquotient“ und die „Anzahl der Sprachen, die eine Person beherrscht“. Üblicherweise wird im Modell die Verwendung von mindestens vier Indikatoren empfohlen.
  • Latente Variable (Faktor): Hierbei handelt es sich um die unbeobachtete Variable, die erst durch ihre Indikatoren gemessen wird. Im Beispiel ist „Intelligenz“ die latente Variable. Es wird zwischen unabhängigen latenten (= exogenen) und abhängig latenten (= endogenen) Variablen unterschieden.
  • Messmodell (measurement model): Hierbei handelt es sich um den Kern des Strukturgleichungsmodells. In ihm werden im Sinne einer konfirmatorischen Faktorenanalyse (confirmatory factor analysis) Verbindungen zwischen den Indikatoren und den latenten Variablen modelliert. Hierbei spielt die Kovarianz eine entscheidende Rolle.
  • Strukturmodell (structural model): Hierbei handelt es sich um die Menge exogener und endogener Variablen und deren Verbindungen.

Modellelemente und grundlegende Vorgehensweise[Bearbeiten | Quelltext bearbeiten]

Modellelemente[Bearbeiten | Quelltext bearbeiten]

Für die Modellierung haben Mulaik und Millsap (2000) vier Schritte vorgeschlagen.[9] Im ersten Schritt wird eine Faktorenanalyse durchgeführt, um die Anzahl der latenten Variablen zu bestimmen. Mit einer konfirmatorischen Faktorenanalyse wird im zweiten Schritt das Messmodell bestätigt. Im dritten Schritt wird das Strukturmodell getestet. Im vierten Schritt werden verschachtelte Modelle getestet, um die sparsamsten zu identifizieren.

Allerdings ist zu beachten, dass in der Literatur davor gewarnt wird, Modelle so lange zu modifizieren bis sie „passen“ (Überanpassung). Vielmehr muss zur Überprüfung veränderter bzw. neuer Hypothesen immer eine neue Stichprobe erhoben werden.[10][11]

Grundlegende Vorgehensweise[Bearbeiten | Quelltext bearbeiten]

  1. Theoretische Fundierung und Hypothesenbildung
  2. Methodenwahl
  3. Modellformulierung
  4. Empirische Erhebung
  5. Parameterschätzung
  6. Beurteilung der Schätzergebnisse# ggf. Modifikation der Modellstruktur

Anwendungen[Bearbeiten | Quelltext bearbeiten]

Strukturgleichungsmodelle spielen unter anderem in der empirischen Sozialforschung und der Psychologie eine wichtige Rolle. Eine Besonderheit von Strukturgleichungsmodellen ist das Überprüfen latenter (nicht direkt beobachtbarer) Variablen. Pfadanalyse, Faktorenanalyse und Regressionsanalyse können als Spezialfälle von Strukturgleichungsmodellen angesehen werden.[12] Ein Strukturgleichungsmodell stellt wiederum einen Spezialfall eines sogenannten Kausalmodells dar.[13]

Software[Bearbeiten | Quelltext bearbeiten]

Strukturgleichungsmodelle werden von vielen gängigen Statistikprogrammen unterstützt. Daneben gibt es eine Reihe spezialisierter Software, die entweder als Standalone-Programm ausführbar ist oder bestehende Software ergänzt.[14] Da die unterschiedlichen Programme häufig unterschiedliche Fähigkeiten haben und unterschiedliche Algorithmen verwenden, um ähnliche genannte Analysen durchzuführen, ist es gute Praxis, sowohl den Namen als auch die Version des Programms zu nennen mit dem gearbeitet wird.[15]

Name Lizenz Plattform Addon-Package zu Link
Mplus kommerziell Windows, Mac, Linux Standalone statmodel.com
AMOS kommerziell Windows Standalone ibm.com
Lavaan Open Source Windows, Mac, Linux Ergänzung zu R lavaan.ugent.be
Lisrel kommerziell Windows Standalone ssicentral.com
EQS kommerziell Windows, Mac, Linux Standalone mvsoft.com
Stata kommerziell Windows, Mac, Linux Standalone stata.com
SAS kommerziell Windows, Mac, Linux Standalone sas.com
OpenMX Open Source Windows, Mac, Linux Ergänzung zu R openmx.ssri.psu.edu
Ωnyx Freeware Windows, Mac, Linux Standalone onyx.brandmaier.de
SmartPLS 2 Freeware Windows, Linux Standalone smartpls.com
SmartPLS 3 kommerziell Windows, Mac Standalone smartpls.com
PLSGraph kommerziell Windows Standalone plsgraph.com
WarpPLS kommerziell Windows Standalone warppls.com
ADANCO kommerziell Windows, Mac Standalone composite-modeling.com
LVPLS Freeware MS Dos Standalone www2.kuas.edu.tw
matrixpls Open Source Windows, Mac, Linux Ergänzung zu R cran.r-project.org

Literatur[Bearbeiten | Quelltext bearbeiten]

  • K. Arzheimer: Strukturgleichungsmodelle für Politikwissenschaftler. Eine anwendungsorientierte Einführung. Springer VS., Wiesbaden 2015, ISBN 978-3-658-09608-3.
  • R. Bagozzi, Y. Yi: Specification, evaluation, and interpretation of structural equation models. In: Journal of the Academy of Marketing Science. Band 40, Nr. 1, 2012, S. 8–34, doi:10.1007/s11747-011-0278-x.
  • B. M. Byrne: Structural Equation Modeling with EQS and EQS/Windows. Basic Concepts, Applications, and Programming. Thousand Oaks 1994.
  • O Christ; Schlüter, E.: Strukturgleichungsmodelle mit Mplus. Eine praktische Einführung. Oldenbourg Wissenschaftsverlag, München 2012, ISBN 978-3-486-59046-3.
  • J. F. Hair, G. T. M. Hult, C. M. Ringle, M. Sarstedt: A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2. Auflage. Sage, Thousand Oaks, CA 2017, ISBN 978-1-4833-7744-5 (pls-sem.com).
  • J. F. Hair, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. F. Richter, S. Hauff: Partial Least Squares Strukturgleichungsmodellierung (PLS-SEM). Eine anwendungsorientierte Einführung. Vahlen, München 2017, ISBN 978-3-8006-5360-7.
  • J. F. Hair, M. Sarstedt, C. M. Ringle, S.P. Gudergan: Advanced Issues in Partial Least Squares Structural Equation Modeling. Sage, Thousand Oaks 2018, ISBN 978-1-4833-7739-1
  • R. H. Hoyle (Hrsg.): Handbook of structural equation modeling. Guilford Press, 2012, ISBN 978-1-4625-1679-7.
  • J.-B. Lohmöller: Latent Variable Path Modeling with Partial Least Squares. Physica, Heidelberg 1989, ISBN 978-3-642-52512-4.
  • Weiber, Mühlhaus: Strukturgleichungsmodellierung: Eine anwendungsorientierte Einführung in die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS. Springer, 2009, ISBN 3-642-02876-4.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. J. F. Hair, G. T. M. Hult, C. M. Ringle, M. Sarstedt: A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage, Thousand Oaks, CA 2014, ISBN 978-1-4522-1744-4 (pls-sem.com).
  2. Wright, Sewall: The theory of path coefficients a reply to Niles’s criticism. In: Genetics 8.3, 1923, S. 239.
  3. Trygve Haavelmo: The statistical implications of a system of simultaneous equations. In: Econometrica, Journal of the Econometric Society 1943, S. 1–12.
  4. Karl G. Jöreskog: Analysis of covariance structures. In: Multivariate analysis. 3, 1973, S. 263–285.
  5. H. O. A. Wold: Soft Modeling: The Basic Design and Some Extensions. In: K. G. Jöreskog, H. O. A. Wold (Hrsg.): Systems Under Indirect Observations: Part II. Amsterdam, 1982, S. 1–54.
  6. Nicole Franziska Richter, Rudolf R. Sinkovics, Christian M. Ringle, Christopher Schlägel: A critical look at the use of SEM in international business research. In: International Marketing Review. Band 33, Nr. 3, 9. Mai 2016, ISSN 0265-1335, S. 376–404, doi:10.1108/IMR-04-2014-0148.
  7. Joseph F. Hair, Marko Sarstedt, Torsten M. Pieper, Christian M. Ringle: The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. In: Long Range Planning. Band 45, Nr. 5–6, S. 320–340, doi:10.1016/j.lrp.2012.09.008.
  8. Joe F. Hair, Marko Sarstedt, Christian M. Ringle, Jeannette A. Mena: An assessment of the use of partial least squares structural equation modeling in marketing research. In: Journal of the Academy of Marketing Science. Band 40, Nr. 3, 1. Mai 2012, ISSN 0092-0703, S. 414–433, doi:10.1007/s11747-011-0261-6.
  9. Stanley A. Mulaik, Roger E. Millsap: Doing the four-step right. In: Structural Equation Modeling. Band 7, Nr. 1, 2000, S. 36–73, doi:10.1207/S15328007SEM0701_02.
  10. Klaus Backhaus, Bernd Erichson, Wulff Plinke, Rolf Weiber: Multivariate Analysemethoden – Eine anwendungsorientierte Einführung. 12. Auflage. Springer/Heidelberg, Berlin 2008, ISBN 978-3-540-85044-1.
  11. Jürgen Bortz, René Weber: Statistik für Human- und Sozialwissenschaftler. 6. Auflage. Springer, Heidelberg 2005, ISBN 3-540-21271-X, doi:10.1007/b137571.
  12. Klaus Backhaus, Wulff Plinke, Bernd Erichson, Rolf Weiber: Multivariate Analysemethoden – Eine anwendungsorientierte Einführung. 11. Auflage. Springer, Berlin / Heidelberg 2006, ISBN 3-540-29932-7.
  13. Ronald D. Anderson, Gyula Vastag: Causal modeling alternatives in operations research: Overview and application. In: European Journal of Operational Research. Band 156, 2004, S. 92–109 (home.kelley.iupui.edu [PDF; abgerufen am 18. Oktober 2011]).
  14. John Fox: Teacher's Corner: Structural-Equation Modeling with the sem Package in R. In: Structural Equation Modeling. Band 13, Nr. 3, 2006, S. 465–486 (socserv.mcmaster.ca [PDF; abgerufen am 18. Oktober 2011]).
  15. Kline: Principles and Practice of Structural Equation Modeling. 2011, S. 79–88.