Lebesgue-Stieltjes-Maß
Das Lebesgue-Stieltjes-Maß ist ein Begriff aus der Maßtheorie, einem Teilbereich der Mathematik. Es enthält als einen Spezialfall das Lebesgue-Maß und wird zur Konstruktion des Lebesgue-Stieltjes-Integrals genutzt.
Definition
[Bearbeiten | Quelltext bearbeiten]Gegeben sei eine monoton wachsende, rechtsstetige Funktion und der Messraum , wobei die Borelsche σ-Algebra bezeichnet. Dann heißt das eindeutig bestimmte Maß auf diesem Messraum mit
Lebesgue-Stieltjes-Maß.
Beispiele
[Bearbeiten | Quelltext bearbeiten]- Das bekannteste Beispiel eines Lebesgue-Stieltjes-Maßes ist das Lebesgue-Maß , aus dem das Lebesgue-Integral konstruiert wird. Hier ist .
- Für und mit für und für ist das Lebesgue-Stieltjes-Maß das Diracmaß .
- Ist eine nichtnegative, stetige Funktion mit Stammfunktion , so ist das Maß mit Dichte .
- Ist zusätzlich und , so ist ein Wahrscheinlichkeitsmaß und ist die Verteilungsfunktion.
- Sind die beiden obigen Fälle erfüllt, so handelt es sich um ein Wahrscheinlichkeitsmaß mit Dichte. Diese Maße spielen eine wichtige Rolle in der Stochastik.
Konstruktion
[Bearbeiten | Quelltext bearbeiten]Gegeben sei der Halbring und eine wachsende, rechtsseitig stetige Funktion . Dann ist
ein σ-endliches Prämaß, das sogenannte Lebesgue-Stieltjessches Prämaß. Dann lässt sich mit dem Maßerweiterungssatz von Carathéodory eine eindeutige Fortsetzung dieses Prämaßes zu einem Maß konstruieren. Dazu wird ein äußeres Maß , das sogenannte äußere Lebesgue-Stieltjessche Maß definiert, und dieses auf die von erzeugte σ-Algebra eingeschränkt. Diese σ-Algebra ist dann genau die Borelsche σ-Algebra und es ist .
Vervollständigung
[Bearbeiten | Quelltext bearbeiten]Der oben konstruierte Maßraum ist im Allgemeinen kein vollständiger Maßraum. Da das äußere Lebesgue-Stieltjessche Maß aber auch ein metrisches äußeres Maß ist, enthält die σ-Algebra der messbaren Mengen bezüglich des äußeren Maßes die Borelsche σ-Algebra. Demnach ist der Maßraum die Vervollständigung von .
Literatur
[Bearbeiten | Quelltext bearbeiten]- Jürgen Elstrodt: Maß- und Integrationstheorie. 6. Auflage. Springer, Berlin/Heidelberg/New York 2009, ISBN 978-3-540-89727-9.
- Achim Klenke: Wahrscheinlichkeitstheorie. 2. Auflage. Springer, Berlin/Heidelberg 2008, ISBN 978-3-540-76317-8.