Quantenmechanische Messung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der quantenmechanische Messprozess beschreibt die Messung einer physikalischen Größe an einem Objekt der Quantenphysik. Für die klassische Physik gilt immer, aber für die Quantenphysik nur teilweise, dass der Messwert schon vor der Messung eindeutig festliegt und bei Wiederholungsmessungen an gleichen Messobjekten im gleichen Zustand stets den gleichen Wert hat.

Dass eine physikalische Größen erst bei ihrer Messung einen bestimmten Wert bekommt, gilt in der Quantenphysik häufig auch dann, wenn der Zustand des Messobjekts mit idealer Genauigkeit so vollständig wie möglich präpariert wurde. Bei Wiederholungsmessungen an identisch präparierten Objekten streuen die Messwerte dann unvermeidlich in einem ganzen Wertebereich. Beispiele sind der Zeitpunkt, an dem ein radioaktiver Atomkern ein Strahlungsquant aussendet, oder die seitliche Ablenkung eines der Elektronen, das in einem Beugungsexperiment mit einem Teilchenstrahl auf den Schirm trifft. Diese Unbestimmtheit ist nicht auf mangelnde Kenntnis des genauen Zustands zurückzuführen, wie z. B. die Unsicherheit über das Ergebnis beim Würfeln, bevor der Würfelbecher aufgehoben wird. Denn sie tritt eben auch dann auf, wenn der Zustand des Messobjekts mit der nach der Quantenmechanik größtmöglichen Genauigkeit bekannt ist.[1]

Am Messgerät ist, wie bei jeder Messung in der klassischen Physik auch, immer nur ein Wert abzulesen, aber es ist bis heute nicht befriedigend gelöst, auf welche Weise dieser aus den vielen möglich gewesenen Werten ausgewählt wird. Mit der Quantenmechanik (wie auch mit der Quantenfeldtheorie) lässt sich für jeden der möglichen Messwerte zwar die Wahrscheinlichkeit berechnen, dass er auftritt, aber die Möglichkeit einer präzisen Vorhersage scheint außer bei gewissen Ausnahmen prinzipiell ausgeschlossen. Damit stellt der quantenmechanische Messprozess für die Interpretation dieser beiden ansonsten überaus erfolgreichen Theorien eins der größten ungelösten Probleme dar.

Bei Messungen an einem makroskopischen Objekt gilt, dass sich bei einer exakten Wiederholung von Präparation und Messung dasselbe Ergebnis einstellt (idealerweise exakt, real im Rahmen der Messgenauigkeit). Das erfüllt die Forderung an die Wissenschaft, dass ihre Ergebnisse reproduzierbar seien. Des Weiteren kann man die Rückwirkung des Messprozesses auf das makroskopische Objekt entweder wegen ihrer Geringfügigkeit vernachlässigen (ideale Messung) oder genau angeben.

Bei Messungen an Quantenobjekten hingegen ist es typisch, dass identische Messprozeduren an identisch vorbereiteten (‚präparierten‘) Objekten zu weit streuenden Messergebnissen führen. Nach der vorherrschenden Kopenhagener Deutung der Quantenmechanik sind solche Abweichungen nicht in der Unkenntnis über den genauen Zustand des Objekts oder des Messapparates begründet, sondern liegen in der Natur der Quantenobjekte und sind damit ein wesentliches Merkmal der Quantenphysik.[1]

Reproduzieren lässt sich das Ergebnis einer quantenphysikalischen Messung an einem einzelnen Objekt nur in Sonderfällen. Nur in diesen Fällen bleibt auch das Objekt in dem Zustand, den es vor der Messung hatte. Es handelt sich dann beim Zustand um einen Eigenzustand der Messgröße und bei dem Messwert um einen ihrer Eigenwerte. Ist der Zustand des Objekts aber kein Eigenzustand der Messgröße, wird er auf unvorhersagbare Weise – passend zum jeweils erhaltenen Messwert, der immer einer der Eigenwerte ist – verändert. Doch auch bei diesen nicht reproduzierbaren Messwerten kann man reproduzierbare Ergebnisse finden, wenn man die Messungen wiederholt und aus vielen Einzelmessungen Mittelwerte bestimmt, z. B. für die Lebensdauer, die Reaktionsrate bzw. den Wirkungsquerschnitt.

Ablauf und Folgen des Messprozesses

[Bearbeiten | Quelltext bearbeiten]

Bei jedem Messprozess gibt es eine physikalische Wechselwirkung zwischen gewissen Eigenschaften des Messobjektes (z. B. Ort, Impuls, magnetisches Moment) und dem Zustand der Messapparatur (allgemein „Zeigerstellung“ genannt). Nach dem Messprozess kann der Wert der gemessenen Größe an der Zeigerstellung des Messgeräts abgelesen werden.

Der quantenmechanische Messprozess erfordert wegen der prinzipiellen Unterschiede zum klassischen Messprozess eine tiefergehende Interpretation. John v. Neumann hat im Rahmen der Kopenhagener Deutung 1932 als erster den typischen Messvorgang formal beschrieben und damit die heute noch weitgehend akzeptierte Sichtweise entwickelt.[2][3] Formale Grundlage ist, dass in der Quantenmechanik die Zustände eines physikalischen Systems durch Vektoren in einem Hilbertraum und die beobachtbaren Größen (z. B. Ort, Impuls, Spin, Energie) durch hermitesche Operatoren dargestellt werden (z. B. für Energie, Drehimpuls etc., oder Masse und Ladung des Teilchens). Die Eigenwerte der Operatoren sind die möglichen Messwerte. Sie sind auch diejenigen Messwerte, die wohlbestimmt sind und bei jeder guten Messung denselben Wert ergeben, wenn das Objekt sich in einem Eigenzustand des betreffenden Operators befindet.

Nach von Neumann müssen beim typischen quantenphysikalischen Messprozess drei Schritte betrachtet werden:

  • Präparation: Es wird eine Menge von Teilchen (oder anderen Quantensystemen) erzeugt, welche durch einen Zustand eines der Teilchen repräsentiert wird. Der Messvorgang bezieht sich jeweils auf die Messung an einem Exemplar.
  • Wechselwirkung: Zwischen dem Quantensystem und dem Messgerät findet eine Wechselwirkung statt. Dadurch verändert das Gesamtsystem aus Quantensystem und Messgerät seinen Zustand.
  • Registrierung: Nach Abschluss der Wechselwirkung wird am Messgerät das Messergebnis abgelesen. Bei streuenden Messergebnissen wird die ganze Messung im Allgemeinen so oft wiederholt, bis sich ein verlässlicher Mittelwert bilden lässt.

Dieselben drei Schritte gelten auch für Messungen in der klassischen Physik, hier sind die Folgen aber deutlich andere. In der Quantenmechanik ist der Messwert vor der Messung nur in den Sonderfällen festgelegt, dass das Quantenobjekt sich in einem Eigenzustand der Messgröße befindet. Im Allgemeinen enthält sein Zustand in Form von Komponenten aber eine Vielzahl von Eigenzuständen, und jeder der zugehörigen Eigenwerte kann als Messergebnis erscheinen. Ein Beispiel ist die Messung der Ortskoordinate in einem Beugungsexperiment, wenn die zum Teilchen gehörende Materiewelle, die den Zustand des Teilchens angibt, auf dem ganzen Schirm auftrifft, also viele mögliche Orte enthält, aber nur an einem einzigen Ort ein Signal hervorruft. Darüber, welcher der möglichen Messwerte zum Ergebnis der Messung wird, sind nur Wahrscheinlichkeitsaussagen möglich.

Da die Quantenobjekte sich außerhalb eines Messprozesses nach einer Bewegungsgleichung (wie z. B. der Schrödingergleichung) stetig entwickeln, sind in infinitesimalen Zeiten keine endlichen Veränderungen möglich, insbesondere kein Sprung zu einem anderen Eigenwert. Daher muss eine zweite Messung derselben Größe direkt im Anschluss an die erste Messung auch dasselbe Ergebnis liefern. Damit die Theorie dies sicherstellt, muss sie voraussetzen, dass das Quantenobjekt durch die Messung in denjenigen Eigenzustand der Messgröße überführt wurde, der den gefundenen Messwert zum Eigenwert hat. Alle Komponenten des Zustands, die zu anderen Eigenwerten gehören, müssen bei der Messung gelöscht werden. Dieser Prozess ist irreversibel, denn am überlebenden Eigenzustand lässt sich nicht mehr spezifizieren, welche anderen Komponenten das Quantensystem vorher noch besessen hat. Dieser Vorgang wird als Kollaps der Wellenfunktion oder Zustandsreduktion bezeichnet. Er muss instantan ablaufen, konnte aber bisher nicht weiter aufgeklärt werden. Es bleibt damit auch ungeklärt, inwieweit ein instantaner Kollaps der Wellenfunktion einen realen physikalischen Vorgang beschreibt, oder nur die sprunghafte Veränderung des Informationsstands aufseiten des Beobachters.[4]

Präparation des Messobjekts

[Bearbeiten | Quelltext bearbeiten]

Als Präparation eines Quantenobjekts bezeichnet man einen Vorgang, nach dem das Objekt in einem bestimmten Zustand vorliegt oder zu einer bestimmten Untermenge seiner möglichen Zustände gehört. Im ersten Fall, z. B. ein Elektron mit bestimmtem Impuls und bestimmter Richtung des Spin, wird der Zustand durch einen Vektor des Hilbertraums beschrieben. Für die Praxis wichtiger ist der zweite Fall, dass eine ganze Untermenge von Zuständen vorliegt, z. B. ein Elektron mit dem vorgegebenen Impuls, aber einer beliebigen Richtung des Spin. Dann handelt es sich um ein Zustandsgemisch, das besser mit einem Dichteoperator beschrieben wird (s. u.).

Die Präparation eines Systems in einem Zustand oder Zustandsgemisch, in dem bestimmte messbare Größen vorgegebene Werte haben sollen, wird zunächst durch Messungen dieser Größen an vielen Systemen und nachfolgende Aussonderung derjenigen Exemplare erreicht, die nicht die gewünschten Messwerte gezeigt haben. Die vorgegebenen Größen müssen kommensurabel sein, sodass die Messung der einen Größe nicht die schon getroffene Auswahl der anderen wieder zunichtemacht. Die Aussonderung der Systeme in unerwünschten Zuständen kann auf verschiedene Weise erfolgen. Zum Beispiel ganz direkt etwa bei der Präparation eines engen Teilchenstrahls, indem Teilchen mit ungeeigneter Flugrichtung durch Blenden aufgehalten werden. Oder auch erst nach Ablauf des ganzen Experiments durch nachträgliche Auswahl anhand von Signalen, die für jedes gemessene System aufgezeichnet haben, ob es die erwünschten Eigenschaften hatte. Häufig erfordert die Präparation auch mehrere Stufen, indem z. B. die Systeme erst eine Vorauswahl durchlaufen und dann einer bestimmten Wechselwirkung ausgesetzt werden, um sie in den gewünschten Zustand zu bringen. Ein Beispiel ist die Herstellung eines energetischen Strahls an einem Teilchenbeschleuniger, indem an einer Ionenquelle eine Vorauswahl der Art der Teilchen stattfindet, die anschließend in einem elektrischen Feld eine bestimmte Energie und Flugrichtung erhalten, um dann durch einen Stoß mit anderen Teilchen zu reagieren.

Wechselwirkung erzeugt Verschränkung mit dem Messapparat

[Bearbeiten | Quelltext bearbeiten]

Auch die (makroskopische) Messapparatur wird mit ihren verschiedenen „Zeigerstellungen“ durch Basisvektoren in einem entsprechenden Hilbertraum beschrieben. Jeder Basiszustand entspricht einer bestimmten Zeigerstellung . Das Messgerät ist so konstruiert, dass es bei der Messung das Objekt im Eigenzustand in den Zustand übergeht. Vor Beginn einer Messung sei das Messgerät in einem beliebigen Zustand und das Objekt im Eigenzustand . Dann hat das Gesamtsystem aus Messobjekt und Messgerät anfangs den Zustand

und nach der Messung den Zustand

,

denn der Zeiger zeigt nun auf . Das Objekt selbst, wenn es schon in einem Eigenzustand zum betreffenden Operator ist, verändert sich im Messprozess nach von Neumann nicht. Die Voraussetzung ist in der Realität selten gegeben, ist aber als Modellvorstellung hilfreich.

Im interessierenden Fall ist das System nicht vor der Messung schon in einem Eigenzustand des Messoperators, sondern in einer aus verschiedenen Eigenzuständen gebildeten Linearkombination . Der Anfangszustand des Gesamtsystems ist dann . Durch die Wechselwirkung bildet sich nach den Regeln der Quantenmechanik zunächst der Zustand

,

denn auf jede Komponente des Objektzustands reagiert das Messgerät, indem es den Zustand annimmt.

In diesem Zustand des Gesamtsystems nach der Wechselwirkung kommen gleichzeitig alle Komponenten des Anfangszustands in Korrelation mit ihren zugehörigen Zeigerstellungen vor. Die Superposition der Eigenzustände im Anfangszustand des Messobjekts wurde durch die Wechselwirkung auf die makroskopischen Zustände des Messgerätes übertragen. Der Zustand ist nicht mehr als Produkt eines Zustands des Systems mit einem Zustand des Geräts darzustellen, sondern entspricht einem verschränkten Zustand von System und Messgerät.

Aus dieser Verschränkung heraus wird zum Abschluss des Messprozesses durch die Zustandsreduktion eine der Komponenten ausgewählt, und zwar jeweils mit Wahrscheinlichkeit . Der ursprüngliche Zustand ist nun in zufälliger Wahl durch einen der Zustände ersetzt worden. Mathematisch findet eine Abbildung statt, die aus dem Anfangszustand den Endzustand mit dem normierten Zustandsvektor macht und daher so geschrieben werden kann:

Darin ist

der Projektor auf den Unterraum zum Eigenvektor .

Dass sich keine lineare Bewegungsgleichung denken lässt, die diese Abbildung verursachen könnte, wie dies in der Natur aber bei jeder Messung geschieht, ist der Kern des Messproblems der Quantenmechanik.

Registrierung des Ergebnisses

[Bearbeiten | Quelltext bearbeiten]

Aus der verschränkten Superposition, die durch die Wechselwirkung im Messgerät entstanden ist, bildet sich durch die Messung genau einer der Zustände , und zwar mit einer Wahrscheinlichkeit

.

Dies kann nicht durch eine zeitliche Entwicklung beschrieben werden, die nach einer Schrödingergleichung abläuft (oder einer anderen Bewegungsgleichung, die wie diese linear ist und die Norm erhält).

Zur Lösung, oder wenigstens zur Beschreibung des Messproblems wird eine „Reduktion“ des quantenmechanischen Zustandes postuliert, die auch als Kollaps der Wellenfunktion bezeichnet wird. Sie bewirkt den durch die Messung verursachten Übergang

Damit wird gleichzeitig die durch gegebene Wahrscheinlichkeitsverteilung der möglichen Messwerte auf einen einzigen Wert – den Messwert reduziert. Erst dann kann durch Ablesen des Messgeräts der Wert der gemessenen physikalischen Größe festgestellt werden, und das Quantensystem befindet sich dann mit Sicherheit im zugehörigen Eigenzustand . Damit wird gesichert, dass eine unmittelbar anschließende Wiederholung der Messung dasselbe Ergebnis hat.

Die Zustandsreduktion ist unstetig und findet augenblicklich statt. Wann und wie die Reduktion erfolgt und was ihre physikalische Ursache ist, ist ein auch heute noch ungelöstes Problem. Die vielverwendete Ausdrucksweise, die Zustandsreduktion geschehe bei dem Wechselwirkungsprozess, der mit dem Messgerät beobachtet werden soll, kann spätestens seit der Realisierung von Delayed-Choice-Experimenten und Quantenradierern als widerlegt gelten. Annahmen über Zeitpunkt oder Ursache der Reduktion reichen bis zum Moment der subjektiven Wahrnehmung im Bewusstsein eines Experimentators (z. B. bei Schrödingers Katze und Wigners Freund).

Diese offene Frage hat wesentlich dazu beigetragen, dass mehrere Interpretationen der Quantenmechanik entwickelt wurden, die der Kopenhagener Deutung in diesem Punkt widersprechen. Zu nennen ist die spontane Reduktion zu stochastisch verteilten Zeitpunkten in der GRW-Theorie des dynamischen Kollaps oder durch Dekohärenz aufgrund der Energie-Zeit-Unschärferelation, wenn die Selbstenergie durch Gravitation berücksichtigt wird[5]. Eine grundsätzlich andere Antwort bietet die Viele-Welten-Interpretation, in der bei jeder Messung unbemerkt so viele Kopien der Welt entstehen wie es mögliche Messwerte gibt, sodass in jeder der Welten einer der Werte realisiert ist.

Messung an Zustandsgemischen

[Bearbeiten | Quelltext bearbeiten]

Für Systeme, deren Zustand durch einen Dichteoperator beschrieben wird, ist die Wahrscheinlichkeit, bei der Messung den Eigenwert des Operators zu finden, gegeben durch:

.

Der Operator ist der Projektor in den Teilraum der Eigenzustände zum Eigenwert . Direkt nach der Messung befindet sich das System im Zustand, der durch den Dichteoperator

gegeben ist.

  • John v. Neumann: Mathematische Grundlagen der Quantenmechanik. [Nachdr. der Ausg.] Berlin, Springer, 1932. – Berlin; Heidelberg; New York: Springer, 1996. Digitalisat der Ausgabe von 1932 bei der Universitätsbibliothek Göttingen
  • Jürgen Audretsch: Verschränkte Systeme. ISBN 3-527-40452-X, 2005, insbesondere auch zur Messung an verschränkten Systemen, selektive Messung und nicht-selektive Messung Kapitel 7
  • John Archibald Wheeler und Wojciech Hubert Zurek Quantum Theory and Measurement Princeton Series in Physics Band 81, Princeton New Jersey 1983 Online

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. a b Erwin Schrödinger nennt diese quantenmechanische Unbestimmtheit, die auch durch die Heisenbergsche Unschärferelation ausgedrückt wird und die schon in einem einzelnen wohldefinierten Zustand vorliegen kann, „Heisenbergisch“, im Unterschied zu der „Boltzmannischen“ Unbestimmtheit, die in der klassischen statistischen Physik, z. B. in der kinetischen Gastheorie nach Ludwig Boltzmann, der Unkenntnis des Zustands eines einzelnen herausgegriffenen Teilchens entspricht.
    Karl von Meyenn: Eine Entdeckung von ganz außerordentlicher Tragweite – Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon, Springer Verlag, 2011, S. 566.
  2. J. v. Neumann: Mathematische Grundlagen der Quantenmechanik. Springer (1932, 1968, 1996).
  3. W. Heisenberg: Physik und Philosophie. Hirzel, Stuttgart 1959.
  4. F. H. Fröhner hat nachgewiesen, dass die quantenmechanischen Wahrscheinlichkeiten widerspruchsfrei als Bayessche Wahrscheinlichkeiten aufgefasst werden können. Diese ändern sich, indem die Messung den Informationsstand des Beobachters ändert. Dazu wird keine Zeit benötigt; was kollabiert, ist nichts Physikalisches, sondern nur der Informationsmangel des Beobachters. F. H. Fröhner: Missing Link between Probability Theory and Quantum Mechanics: the Riesz-Fejér Theorem. (Zeitschrift für Naturforschung A 53a (1998) Seite 637–654, doi:10.1515/zna-1998-0801) wird
  5. Stuart Hameroff, Roger Penrose: Consciousness in the universe: A review of the ‘Orch OR’theory. In: Physics of life reviews. Band 11, Nr. 1, 2014, S. 39–78 (online [abgerufen am 13. März 2019]).