Konnektionismus

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Konnektionismus ist ein Problemlösungsansatz in der Kybernetik und beschäftigt sich mit dem Verhalten vernetzter Systeme basierend auf Zusammenschlüssen von künstlichen Informationsverarbeitungseinheiten.[1] Verhalten wird als Produkt einer Vielzahl interagierender Komponenten verstanden, die sich wechselseitig beeinflussen.[2]Mit Hilfe künstlicher neuronaler Netze wird die aus einem scheinbaren Chaos erwachsende Systemordnung simuliert.[3] Anwendungsgebiete des Konnektionismus sind unter anderem Neurophysiologie, Psychologie, Biologie, Linguistik, Neuroinformatik, Bewegungswissenschaft und die Künstliche-Intelligenz-Forschung.

Problemlösen mit konnektionistischen Systemen[Bearbeiten]

Problemlösen besteht unabhängig von den jeweiligen Anwendungsfeldern stets aus den Schritten:

  • Informationen erheben
  • Modell bilden
  • Prognose erstellen
  • Ergebnis kontrollieren

Der Schritt der Modellbildung ist dabei zweifellos der schwierigste. Expertensysteme, Simulationen und numerische Rechnungen erfordern detaillierte Kenntnisse des Systems, das untersucht werden soll. Ihr konstruktivistischer Ansatz beruht auf der Hypothese, dass Systeme durch schrittweise vorgenommenes Zerlegen in Teilsysteme bestimmter Struktur algorithmisierbar beziehungsweise vollständig symbolisch beschreibbar sind.[4]

Bei einem konnektionistischen Modell wird versucht, das (äußere) Verhalten eines Systems als Ganzes nachzubilden durch den Zusammenhang einer großen Anzahl von relativ einfachen und oft recht ähnlichen Einheiten, die in einem dichten Netzwerk miteinander verbunden sind. Diese Einheiten arbeiten lokal und kommunizieren mit anderen nur via Signalen über Verbindungen.

Der Aufbau eines konnektionistischen Modellsystems wird für ausgewählte Beispiele des zu untersuchenden Systems so vorgenommen, dass es unter gleichen Bedingungen das gleiche Verhalten wie sein Vorbild zeigt. Für diese Fälle besteht also eine Isomorphie des Verhaltens, das konnektionistische Modellsystem antwortet auf Eingaben mit den gleichen Ausgaben wie sein reales Vorbild. Da das Systemverhalten nicht algorithmisiert wird, ist jedoch nicht nachvollziehbar, wie das konnektionistische Modellsystem intern funktioniert, seine Ergebnisse entstehen immer aus dem Zusammenwirken aller Elemente. Dabei muss das konnektionistische Modellsystem nicht notwendigerweise isomorph zum Untersuchungsgegenstand sein. Nach Smolensky erfolgt Repräsentation des Wissens subsymbolisch.

Subsymbolische Hypothese[Bearbeiten]

Die Ableitung von Wissen entsteht aus der Interaktion einer großen Anzahl von Einheiten. Diese Interaktion erlaubt keine exakte Beschreibung auf konzeptioneller Ebene, sondern muss direkt durch Modellprozessoren verwirklicht werden. Die Modellvorstellung eines konnektionistischen Systems ist grundlegend und unabhängig von einer konkreten Realisierung. Neben den bekannten künstlichen neuronalen Netzen ist besonders das Sensitivitätsmodell von Frederic Vester als Implementation einer konnektionistischen Auffassung zu erwähnen.

Vorteile konnektionistischer Architekturen[Bearbeiten]

Die wichtigsten Vorteile von Systemen mit konnektionistischer Architektur (Beispiel: das menschliche Gehirn) sind:[5]

  1. Da sie nicht nach vorgegebenen Regeln arbeiten, sind sie sehr anpassungsfähig.
  2. Sie können lernen - allerdings sind lange Vorbereitungszeiten erforderlich, bis das System einsatzbereit ist.
  3. Sie arbeiten auch bei unvollständigen Daten und verrauschten Umgebungen ausgezeichnet, ein bekanntes Beispiel ist die Gesichtserkennung.
  4. Sie sind, aufgrund ihrer Redundanz, robust bei Ausfall von Teilen des Systems.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1.  Philip T. Quinlan: Connectionism and psychology : a psychological perspective on new connectionist researc. Harvester Wheatsheaf, New York 1991, ISBN 0-7450-0835-6, S. 1.
  2.  David E. Rumelhart, James L. McClelland, San Diego. PDP Research Group. University of California: Parallel distributed processing : explorations in the microstructure of cognitio. MIT Press, Cambridge, Mass. 1986, ISBN 0-262-18120-7, S. 76.
  3. Rainer Wollny: Bewegungswissenschaft: Ein Lehrbuch in 12 Lektionen. 2. Auflage. Meyer & Meyer, Aachen 2010, ISBN 978-3898991834, S. 32.
  4. Allen Newell, Herbert A. Simon: Physical Symbol System Hypothesis, 1976.
  5. Joachim Funke: Problemlösendes Denken, Kohlhammer Verlag 2003, ISBN 3-17-017425-8.