Ornstein-Uhlenbeck-Prozess

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Drei Pfade von unterschiedlichen Ornstein-Uhlenbeck-Prozessen mit σ=0.3, θ=1, μ=1.2:
navy: Startwert a=0 (f. s.)
olivgrün: Startwert a=2 (f. s.)
rot: Startwert gezogen aus der stationären Verteilung des Prozesses.

Der Ornstein-Uhlenbeck-Prozess (oft abgekürzt OU-Prozess) ist ein spezieller stochastischer Prozess, welcher nach den beiden niederländischen Physikern George Uhlenbeck (1900–1988) und Leonard Ornstein (1880–1941) benannt ist. Er ist neben der geometrischen Brownschen Bewegung einer der einfachsten und gleichzeitig wichtigsten über eine stochastische Differentialgleichung definierten Prozesse.

Definition und Parameter[Bearbeiten]

Seien a, \mu \in \R und  \theta, \sigma > 0 Konstanten. Ein stochastischer Prozess  (X_t),\;t\ge 0 heißt Ornstein-Uhlenbeck-Prozess mit Anfangswert a, Gleichgewichtsniveau \mu, Steifigkeit \theta und Diffusion \sigma, wenn er das folgende stochastische Anfangswertproblem löst:

 dX_t=\theta(\mu-X_t)dt + \sigma dW_t,\;\;X_0=a,

wobei (W_t) ein Standard-Wiener-Prozess ist.

Die Parameter lassen sich einfach interpretieren und somit bei der Modellierung einer stochastischen Zeitreihe einfach als "Stellschrauben" verwenden:

  • \mu ist das gleichgewichtige Niveau des Prozesses (englisch: mean reversion level). Liegt X_t über diesem Wert, so ist der Driftterm \theta(\mu-X_t) negativ und die Drift wird den Prozess tendenziell nach unten "ziehen". Ist X kleiner, so ist die Drift positiv und der Prozess wird in Erwartung nach oben gezogen.
  • \theta (engl: mean reversion speed oder mean reversion rate) gibt an, wie stark die oben beschriebene "Anziehungskraft" von \mu ist. Für kleine Werte von \theta verschwindet dieser Effekt, für große Werte wird sich X sehr steif um \mu entwickeln.
  • \sigma gibt an, wie stark der Einfluss von W_t (also des Zufalls) auf den Prozess ist. Für \sigma=0 wird X einfach exponentiell gegen \mu konvergieren, bei starker Diffusion wird diese Konvergenz zufällig gestört.

Der Unterschied zum ebenfalls mit dem mean-reversion-Mechanismus ausgestatteten Wurzel-Diffusionsprozess oder der geometrischen Brownschen Bewegung besteht im Wesentlichen darin, dass beim OU-Prozess der Diffusionsterm \sigma dW_t konstant, also unabhängig von X ist. Dies führt dazu, dass der OU-Prozess im Gegensatz zu den anderen beiden auch negative Werte annehmen kann.

Lösung der Differentialgleichung[Bearbeiten]

Im Gegensatz zum Wurzel-Diffusionsprozess ist die obige Differentialgleichung explizit lösbar, wenn auch nicht (wie bei der geometrischen brownschen Bewegung) integralfrei darstellbar: wendet man auf die zweidimensionale Funktion f: \R \times \R_+ \to \R, \;(X_t,t) \mapsto X_t e^{\theta t} einerseits das Lemma von Ito, andererseits die gewöhnliche Kettenregel der Differentialrechnung an, so erhält man

df(X_t,t) =  \theta X_t e^{\theta t}\, dt + e^{\theta t} dX_t = e^{\theta t}\theta \mu \, dt + \sigma e^{\theta t} dW_t. \, .

Die obige Identität von 0 bis t aufintegriert (wobei X_0=a) ergibt die Lösung

 X_t  = a e^{-\theta t} + \mu(1-e^{-\theta t}) + \int_0^t \sigma e^{\theta (s-t)} dW_s.

Eigenschaften[Bearbeiten]

E(X_t)= a e^{-\theta t} + \mu(1-e^{-\theta t})\, und
\operatorname{Cov}(X_s,X_t)=\frac{\sigma^2}{2\theta}\,(e^{-\theta|s-t|}- e^{-\theta(s+t)} ).\,.
Bei deterministischem Anfangswert a ist also X_t \sim\mathcal{N}(a e^{-\theta t} + \mu(1-e^{-\theta t}), \frac{\sigma^2}{2\theta}(1 - e^{- 2 \theta t} )) verteilt.
  • Da sowohl Erwartungswert als auch Varianz konvergieren, existiert eine stationäre Verteilung für den Markov-Prozess X: es handelt sich dabei um eine Normalverteilung mit Erwartungswert \mu und Varianz  \frac{\sigma^2}{2\theta}. Im Gegensatz zum Wiener-Prozess ist der Ornstein-Uhlenbeck-Prozess also (schwach) stationär. Man sagt dann, dass der Prozess ein "invariantes Maß" hat: Für jedes t gilt dann
X_t \sim\mathcal{N}(\mu, \frac{\sigma^2}{2\theta}).

Der Prozess hat also keine Asymptote bei y=\mu.


  • In gewisser Hinsicht ist der OU-Prozess komplizierter als der Wiener-Prozess. Für große Zeitskalen kann jedoch der Wiener-Prozess als Approximation des OU-Prozesses dienen. Es gilt im Sinne der Verteilungskonvergenz[1]
\left(\frac\lambda{\sqrt{n}}X_{nt}\right)_{t \ge 0} \xrightarrow{\mathcal{D}} (W_t)_{t \ge 0}.

Lévy-Prozesse[Bearbeiten]

Pfad von einem Cauchy-OU-Prozess

Wird die definierende Differentialgleichung nicht von einer brownschen Bewegung, sondern von einem Lévy-Prozess angetrieben, so erhält man auch einen (nicht-gaußschen) Ornstein-Uhlenbeck-Prozess.

Literatur[Bearbeiten]

  • G. E. Uhlenbeck, L. S. Ornstein: On the theory of Brownian Motion. In: Physical Review. 36, 1930, S. 823–841.
  • D. T. Gillespie: Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. In: Physical Review E. 54, 1996, S. 2084–2091.

Einzelnachweise[Bearbeiten]

  1. L. C. G. Rogers and D. Williams: Diffusions, Markov Processes and Martingales. Vol. 1. Cambridge University Press, Cambridge, 2000, S. 54.