Parkettierung

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 23. Juli 2016 um 21:32 Uhr durch WikiWurm2014 (Diskussion | Beiträge) (Tippfehler entfernt). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

In der Mathematik bezeichnet Parkettierung (auch Kachelung, Pflasterung, oder Flächenschluss[1]) die lückenlose und überlappungsfreie Überdeckung der (euklidischen) Ebene durch gleichförmige Teilflächen. Das Konzept kann auch auf höhere Dimensionen erweitert werden.

Bei praktischen Anwendungen wird die Überdeckung mit Hilfe von Primitiven („primitiven“ Flächen-Formen, möglichst mit einem einfachen Polygon) bevorzugt, wofür der entsprechend einschränkende Begriff Tessellation (englisch für „Mosaik“) verwendet wird. Wenn in einer technischen Anwendung ein großes Blech in nicht-primitive Teilflächen (Werkstücke) aufzuteilen ist, wird versucht diese so zu gestalten, dass eine Parkettierung durch ungleiche Teilflächen vorliegt und kein Abfall entsteht.[1]

Die „zyklische Aufteilung von Flächen“ mit ungleichförmigen Teilflächen (keine Polygone) in der Kunst kommt sehr ausgeprägt bei M. C. Escher vor.[2]

Analog zur Parkettierung beziehungsweise zur Tessellation der Ebene (2D) kann auch der drei- oder höherdimensionale Raum unterteilt werden, siehe Raumfüllung.

Definitionen

Eine Kachel (Parkettstein, Pflasterstein) ist eine abgeschlossene topologische Scheibe in der Ebene. (Dadurch werden u. a. Steine mit Löchern und nicht-zusammenhängenden Teilen ausgeschlossen. Gelegentlich werden aber auch solche und allgemeinere Steine zugelassen.)

Eine Parkettierung (Pflasterung, Kachelung, manchmal auch Mosaik) ist eine (abzählbare) Menge von Kacheln, welche sowohl eine Packung (d. h., „kein Punkt der Ebene liegt im Inneren von zwei oder mehr Kacheln“, oder, anders ausgedrückt, „verschiedene Kacheln haben höchstens Randpunkte gemeinsam“) als auch eine Überdeckung (d. h., „jeder Punkt der Ebene gehört zu mindestens einer Kachel“) ist.

Häufig schränkt man den Begriff noch weiter ein, indem man z. B. fordert, dass alle Kacheln homöomorph zur abgeschlossenen Kreisscheibe sind (damit insbesondere kompakt und einfach zusammenhängend), oder aber, dass jede Kachel kongruent zu einem Element einer endlichen Auswahl von Kacheln (den sogenannten „Proto-Kacheln“) ist, dass also nur endlich viele verschiedene Kacheln auftreten. Gibt es genau eine Protokachel, so heißt die Parkettierung monohedral.

Periodische Parkettierungen

Bienenwaben bilden ein Sechseckgitter

Eine Kongruenzabbildung (euklidische Bewegung) der Ebene, welche jede Kachel einer Parkettierung wieder auf eine Kachel abbildet, heißt „Symmetrie“ der Parkettierung. Die Menge aller Symmetrien heißt Symmetriegruppe und ist eine Gruppe. Enthält die Symmetriegruppe einer Parkettierung zwei linear unabhängige Verschiebungen, so heißt die Parkettierung „periodisch“ und die entstehende Symmetriegruppe ebene kristallographische Gruppe von denen es genau 17, die sogenannten Tapetenmustergruppen, gibt.

Wenn man gewisse Anforderungen an die in einer Parkettierung verwendeten Grundformen und ihre Anordnung stellt, ergeben sich Spezialfälle, für die man dann alle möglichen Parkettierungen angeben kann.

Platonische Parkettierungen

Ist nur ein regelmäßiges Polygon als Kachel zugelassen und wird weiter eingeschränkt, dass die Kacheln Kante an Kante angeordnet werden müssen, ergeben sich genau drei mögliche Parkettierungen der Ebene, die platonischen oder regulären Parkettierungen:

Johannes Kepler war der erste, der diese Parkettierungen untersuchte und erkannte, dass sie ein Analogon zu den regulären Polyedern darstellen.[3]

Archimedische Parkettierungen

Dürfen als Grundform beliebige regelmäßige n-Ecke mit gleicher Kantenlänge verwendet werden, so ergeben sich bei Beibehaltung der Kante-an-Kante-Regel und der Einschränkung, dass an jedem Punkt, an dem die Ecken zusammenstoßen, immer die gleiche Kombination von Vielecken (Anzahl und Reihenfolge) zusammenstoßen muss, genau acht weitere mögliche Parkettierungen – die archimedischen, semiregulären oder 1-uniformen Parkettierungen der Ebene:

  • 2 Parkettierungen aus Dreiecken und Quadraten
  • 2 Parkettierungen aus Dreiecken und Sechsecken
  • 1 Parkettierung aus Dreiecken, Quadraten und Sechsecken
  • 1 Parkettierung aus Dreiecken und Zwölfecken
  • 1 Parkettierung aus Achtecken und Quadraten
  • 1 Parkettierung aus Quadraten, Sechsecken und Zwölfecken

Demireguläre Parkettierungen

Parkettierungen, für die zwar als Grundform beliebige regelmäßige n-Ecke mit gleicher Kantenlänge verwendet werden und die die Kante-an-Kante-Regel einhalten, bei denen aber an den Punkten, an denen die Ecken zusammenstoßen, eine von zwei möglichen Kombinationen von Vielecken (Anzahl und Reihenfolge) auftritt, nennt man demireguläre oder 2-uniforme Parkettierungen, zum Beispiel:

  • Parkettierung aus Dreiecken und Quadraten (anderes Muster als bei den entsprechenden archimedischen Parketten)
  • Parkettierung aus Dreiecken und Sechsecken (anderes Muster als bei den entsprechenden archimedischen Parketten)
  • Parkettierung aus Dreiecken, Quadraten und Sechsecken (anderes Muster als bei den entsprechenden archimedischen Parketten)
  • Parkettierung aus Dreiecken, Quadraten und Zwölfecken
  • Parkettierung aus Dreiecken, Quadraten, Sechsecken und Zwölfecken

Es gibt insgesamt 20 demireguläre Parkettierungen.

Parkettierungen mit unregelmäßigen Polygonen

Parkettierungen sind auch mit unregelmäßigen Polygonen möglich. Beispiele sind:

Der niederländische Künstler M. C. Escher ist bekannt für seine Parkettierungen mit exotischen Figuren.

Isohedrale und anisohedrale Parkettierungen

Eine monohedrale Parkettierung heißt isohedral, wenn jede Kongruenzabbildung, die eine Kachel des Parketts auf eine andere abbildet, das ganze Parkett auf sich selbst abbildet. Andernfalls heißt sie anisohedral. Es gibt Kacheln, die sowohl isohedrale als auch anisohedrale Parkettierungen erlauben. Zum Beispiel kann das isohedrale Quadratgitter anisohedral gemacht werden, indem man jede 2. Reihe um eine Viertel Kantenlänge verschiebt. Es gibt allerdings auch anisohedrale Kacheln, die ausschließlich anisohedrale Parkettierungen erlauben, zum Beispiel den Pflasterstein von Heinrich Heesch (siehe Bild).

Parkettierung mit dem Pflasterstein von Heesch. Durch eine Gleitspiegelung können zwar die blauen auf die roten Kacheln abgebildet werden. Dann erhält man allerdings eine verschobene Parkettierung.

Aperiodische Parkettierungen

Sätze von Proto-Kacheln (s. o.), die ausschließlich nichtperiodische Überdeckungen der Ebene zulassen, heißen aperiodisch oder quasikristallin. Parkettierungen können quasiperiodisch sein, das heißt, dass sich beliebig große Ausschnitte wiederholen, ohne dass das Parkett insgesamt periodisch ist. Interessante und schöne Beispiele für quasiperiodische Parkettierungen sind die Penrose-Parkettierungen, benannt nach ihrem Entdecker Roger Penrose.

Siehe auch

Literatur

  • Hans-Günther Bigalke, Heinrich Wippermann: Reguläre Parkettierungen, BI-Wissenschafts-Verlag 1994, ISBN 3-411-16711-4
  • Bruno Ernst: Der Zauberspiegel des M. C. Escher, Taschen, 1992, ISBN 3-8228-0442-8
  • Heinrich Heesch, Otto Kienzle: Flächenschluß, Springer, 1963
  • Branko Grünbaum, G. C. Shephard: Tilings and Patterns. WH Freeman & Co., 1986, ISBN 0-7167-1193-1

Weblinks

Commons: Parkettierung – Album mit Bildern, Videos und Audiodateien

Einzelnachweise

  1. a b Heinrich Heesch, Otto Kienzle: Flächenschluß, Springer, 1963
  2. Bruno Ernst: Der Zauberspiegel des M. C. Escher, 7. Die Kunst der Alhambra, Taschen 1978 und 1992, ISBN 3-8228-0442-8
  3. David Wells: The Penguin Dictionary of Curious and Interesting Geometry. Penguin Books, London 1991. ISBN 0-14-011813-6. S. 213.
  4. Ian Stewart: Fünfeckige Kacheln. In: Spektrum der Wissenschaft, Januar 2000, S. 106–108
  5. Attack on the pentagon results in discovery of new mathematical tile