Ähnlichkeit (Geometrie)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

In der Geometrie sind zwei Figuren genau dann zueinander ähnlich, wenn sie durch eine Ähnlichkeitsabbildung (auch diese Abbildung wird häufig als Ähnlichkeit bezeichnet) ineinander überführt werden können. Das heißt, es gibt eine geometrische Abbildung, die sich aus zentrischen Streckungen und Kongruenzabbildungen (also Verschiebungen, Drehungen, Spiegelungen) zusammensetzen lässt und die eine Figur auf die andere abbildet. Ähnlichkeit erweitert somit die Kongruenz von Figuren um die Möglichkeit der Streckung.

Eigenschaften[Bearbeiten]

Alle hier gleichfarbigen Figuren sind zueinander ähnlich.

Winkel und Streckenverhältnisse stimmen in ähnlichen Figuren überein; somit sind alle Kreise sowie jeweils alle regelmäßigen Vielecke gleicher Eckenzahl, wie gleichseitige Dreiecke und Quadrate, zueinander ähnlich.

Es gilt, dass kongruente Figuren stets ähnlich sind. Das Umgekehrte ist hingegen falsch: Ähnliche Figuren sind nicht notwendigerweise kongruent, da sie verschieden groß sein können.

Als mathematisches Zeichen für geometrische Ähnlichkeit wird \sim (die Tilde) verwendet, z.B: \!\ \Delta ABC \sim \Delta A'B'C' bedeutet, dass die Dreiecke \Delta ABC und \Delta A'B'C' ähnlich sind. Will man dagegen Kongruenz ausdrücken, so kann stattdessen \simeq oder \cong (eine „Mischung“ mit dem Gleichheitszeichen) verwendet werden.

Ähnlichkeit bei Dreiecken[Bearbeiten]

Dreiecke spielen hier eine zentrale Rolle, da sich sehr viele Figuren auf solche zurückführen lassen. Es gilt:

Zwei Dreiecke sind zueinander ähnlich, wenn

  • sie in zwei (und somit in allen drei) Winkeln übereinstimmen; oder
  • sie in allen Verhältnissen entsprechender Seiten übereinstimmen; oder
  • sie in einem Winkel und im Verhältnis der anliegenden Seiten übereinstimmen; oder
  • sie im Verhältnis zweier Seiten und im Gegenwinkel der größeren Seite übereinstimmen.

Diese Sätze werden Ähnlichkeitssätze genannt.

Strahlensätze[Bearbeiten]

Ähnlichkeit bei den Strahlensätzen

Die Strahlensätze machen über die Verhältnisse der Dreiecksseiten bestimmter ähnlicher Dreiecke wichtige Aussagen.

Ähnlichkeit in der fraktalen Geometrie[Bearbeiten]

Ausschnitt aus der Mandelbrot-Menge

Skaleninvariante Ähnlichkeit in gebrochenen, „fraktalen“ Dimensionen ist Gegenstand der fraktalen Geometrie.

Die Ähnlichkeit ist dabei das Ergebnis der Rekursion nichtlinearer Algorithmen. Ein bekanntes Beispiel ist die Mandelbrot-Menge, deren Grenzlinie an jeder Stelle Ähnlichkeit mit den angrenzenden Abschnitten in allen Größenordnungen aufweist.