Bornologischer Raum

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Bornologische Räume sind in dem mathematischen Teilgebiet Funktionalanalysis spezielle lokalkonvexe Räume, für deren lineare Operatoren die aus der Theorie der normierten Räume bekannte Äquivalenz von Stetigkeit und Beschränktheit gilt. Diese Räume lassen sich durch ihre Nullumgebungsbasen charakterisieren und haben weitere Eigenschaften mit normierten Räumen gemeinsam.

Motivation[Bearbeiten | Quelltext bearbeiten]

Eine Teilmenge A eines topologischen K-Vektorraums E heißt beschränkt, wenn sie von jeder Nullumgebung absorbiert wird, d.h. zu jeder Nullumgebung gibt es ein mit .

Eine Teilmenge B eines lokalkonvexen K-Vektorraums heißt Bornolog, wenn folgende Bedingungen erfüllt sind:

  • B ist absolutkonvex, d.h. für und mit gilt .
  • B absorbiert jede beschränkte Menge, d.h. zu jeder beschränkten Menge gibt es ein mit .

Leicht zeigt man, dass jeder lokalkonvexe Raum eine Nullumgebungsbasis aus Bornologen besitzt. Ist umgekehrt jeder Bornolog eine Nullumgebung, so nennt man den Raum bornologisch.

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Jeder metrisierbare lokalkonvexe Raum E ist bornologisch. Ist nämlich B ein Bornolog in E, eine abzählbare Nullumgebungsbasis von E, und nimmt man an, dass B keine Menge der Form enthält, so kann man ein wählen. Dann konvergiert , d.h. ist kompakt und daher beschränkt, also in einer Menge der Form enthalten. Für folgt der Widerspruch . Also ist B eine Nullumgebung.
  • Ist E ein normierter Raum ungleich {0}, so ist mit der Finaltopologie ein Beispiel für einen bornologischen Raum, der nicht metrisierbar ist.

Vererbungseigenschaften[Bearbeiten | Quelltext bearbeiten]

Ein Induktiver Limes bornologischer Räume ist wieder bornologisch.

Beschränkte Operatoren[Bearbeiten | Quelltext bearbeiten]

Wie in der Theorie der normierten Räume heißt ein linearer Operator zwischen topologischen Vektorräumen beschränkt, wenn er beschränkte Mengen wieder auf beschränkte Mengen abbildet.

Für einen lokalkonvexen Raum E sind äquivalent:

  • E ist bornologisch
  • Jeder beschränkte Operator in einen weiteren lokalkonvexen Raum F ist stetig.

Ein linearer Operator heißt folgenstetig, wenn aus in E stets in F folgt. In nicht-metrisierbaren Räumen kann diese Bedingung echt schwächer als Stetigkeit sein.

Für einen bornologischen Raum E und einen linearen Operator sind äquivalent:

  • A ist stetig.
  • A ist folgenstetig.
  • A ist beschränkt.

Bornologische Räume als induktive Limiten normierter Räume[Bearbeiten | Quelltext bearbeiten]

Ein lokalkonvexer Raum E heißt eine induktiver Limes normierter Räume, wenn es lineare Abbildungen mit normierten Räumen gibt, so dass und die Topologie auf E die feinste lokalkonvexe Topologie ist, die alle stetig macht.

Für einen lokalkonvexen Raum E sind äquivalent:

  • E ist bornologisch.
  • E ist ein induktiver Limes normierter Räume.

Man kann einen solchen induktiven Limes sogar angeben. Für eine beschränkte und absolutkonvexe Menge sei . Dann ist ein Vektorraum, und das Minkowski-Funktional zu macht diesen Vektorraum zu einem normierten Raum. Der lokalkonvexe Raum ist genau dann bornologisch, wenn er die induktive lokalkonvexe Topologie aller Inklusionen trägt, wobei die beschränkten, absolutkonvexen Mengen durchläuft.

Kann man für E sogar eine Darstellung als induktiven Limes von Banachräumen finden, so nennt man E ultrabornologisch. In solchen Räumen gelten der Satz über die offene Abbildung und der Satz vom abgeschlossenen Graphen.

Vollständigkeit des Dualraums[Bearbeiten | Quelltext bearbeiten]

Ist E ein lokalkonvexer Vektorraum, so definiert jede beschränkte Menge B in E eine Halbnorm auf dem Dualraum , indem man setzt. Versehen mit der Menge der Halbnormen , wobei B die beschränkten Mengen von E durchläuft, wird zu einem lokalkonvexen Vektorraum, den man dann mit bezeichnet. Dies verallgemeinert die Dualraumbildung bei normierten Räumen. Wie in der Theorie der normierten Räume gilt folgender Satz:

Ist E bornologisch, so ist vollständig, d.h. jedes Cauchy-Netz konvergiert.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Klaus Floret, Joseph Wloka: Einführung in die Theorie der lokalkonvexen Räume (= Lecture Notes in Mathematics. Bd. 56, ISSN 0075-8434). Springer, Berlin u. a. 1968, doi:10.1007/BFb0098549.
  • Reinhold Meise, Dietmar Vogt: Einführung in die Funktionalanalysis (= Vieweg-Studium 62 Aufbaukurs Mathematik). Vieweg, Braunschweig u. a. 1992, ISBN 3-528-07262-8.