Höhe (Geometrie)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Höhen in einem Dreieck: Die Höhen und verlaufen außerhalb des Dreiecks, da sich bei B ein stumpfer Winkel befindet. Verlängert man diese Höhen jeweils über die zugehörigen Lotfußpunkte La und Lc sowie die Höhe über den Eckpunkt B hinaus, so schneiden sich alle drei Geraden im Höhenschnittpunkt H.

Unter einer Höhe versteht man in der Geometrie ein besonderes Lot (Senkrechte) auf eine Strecke oder eine Fläche sowie dessen Länge. Höhen spielen bei der Berechnung von Flächen- und Rauminhalten (Volumina) eine wichtige Rolle. Sie können auch außerhalb von Figuren und Körpern liegen, z. B. bei stumpfwinkligen Dreiecken.

Höhen bei Dreiecken[Bearbeiten | Quelltext bearbeiten]

Fällt man das Lot von einer Ecke auf die gegenüberliegende Dreiecksseite, so schneidet es diese Seite im Lotfußpunkt. Die Strecke zwischen Ecke und Lotfußpunkt nennt man Höhe. Daher hat jedes Dreieck genau drei Höhen. Diese schneiden sich in einem gemeinsamen Punkt, dem Höhenschnittpunkt. Er liegt für spitzwinklige Dreiecke innerhalb und für stumpfwinklige Dreiecke außerhalb des Dreiecks. Beim rechtwinkligen Dreieck fällt er mit der rechtwinkligen Ecke zusammen. Für die Höhen , und gilt:

Bei rechtwinkligen Dreiecken spielt die Höhe in der Satzgruppe des Pythagoras eine große Rolle.

Den Abstand zwischen den beiden Parallelen bezeichnet man als Höhe im Trapez
Höhen im Parallelogramm

Höhe von Trapez und Parallelogramm[Bearbeiten | Quelltext bearbeiten]

  • Ein Trapez besitzt zwei gegenüberliegende Seiten, die parallel zueinander sind. Den Abstand dieser beiden Parallelen nennt man Höhe des Trapezes.
  • Die Höhe eines Parallelogramms ist der senkrechte Abstand der jeweils gegenüberliegenden Seiten.

Höhen weiterer geometrischer Objekte[Bearbeiten | Quelltext bearbeiten]

  • Bei Prismen und Zylindern ist die Höhe der senkrechte Abstand von Grund- und Deckfläche.
  • Bei Pyramiden und Kegeln ist die Höhe der lotrechte Abstand der Spitze von der Grundfläche.

Zylinder Pyramide Kegel

Siehe auch[Bearbeiten | Quelltext bearbeiten]