HMG-CoA-Reduktase

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
HMG-CoA-Reduktase
HMG-CoA-Reduktase
Stäbchenmodell des Dimers mit Kalotten: Coenzym A (blau), β-Hydroxy-β-methyl-glutarylsäure (rot) und NADP (grün), nach PDB 1DQA
Vorhandene Strukturdaten: s. UniProt
Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 888 Aminosäuren
Sekundär- bis Quartärstruktur Homodimer
Isoformen 2
Bezeichner
Gen-Name HMGCR
Externe IDs
Transporter-Klassifikation
TCDB 2.A.6.6.5
Bezeichnung Steroltransporter-Familie
Enzymklassifikation
EC, Kategorie 1.1.1.34Oxidoreduktase
Substrat 3-Hydroxy-3-Methylglutaryl-CoA + 2 NAD(P)H/H+
Produkte (R)-Mevalonat + CoA-SH + 2 NAD(P)+
Vorkommen
Homologie-Familie HMG-CoA-Reduktase
Übergeordnetes Taxon Eukaryoten
Orthologe
Mensch Hausmaus
Entrez 3156 15357
Ensembl ENSG00000113161 ENSMUSG00000021670
UniProt P04035 Q01237
Refseq (mRNA) NM_000859 NM_008255
Refseq (Protein) NP_000850 NP_032281
Genlocus Chr 5: 75.34 – 75.36 Mb Chr 13: 96.65 – 96.67 Mb
PubMed-Suche 3156 15357

HMG-CoA-Reduktase (HMGCR, Abkürzung für 3-Hydroxy-3-Methylglutaryl-Coenzym-A-Reduktase) heißt dasjenige Enzym, das in Eukaryoten das β-Hydroxy-β-Methylglutaryl-Coenzym-A zu Mevalonat reduziert. In Pflanzen ist Mevalonat der Ausgangsstoff für alle aus Isopren-Einheiten aufgebauten Verbindungen (Isoprenoide). Im Menschen ist die Reaktion geschwindigkeitsbestimmend für die Synthese von Cholesterin. Eine Hemmung der HMG-CoA-Reduktase ist daher von großer medizinischer Bedeutung zur Senkung des Cholesterinspiegels. Zur Gruppe der HMG-CoA-Reduktase-Inhibitoren gehört die Klasse der Statine, die sich von dem Naturstoff Lovastatin ableiten und deren Seitenkette strukturell mit der Mevalonsäure verwandt ist.

Man unterscheidet zwei Enzymtypen, je nach Cofaktor NADH (EC 1.1.1.88) oder NADPH (EC 1.1.1.34). Erstere kommt fast ausschließlich in Bakterien vor, Letztere in allen Lebewesen.

Andere Namen[Bearbeiten | Quelltext bearbeiten]

  • hydroxymethylglutaryl coenzyme A reductase (reduced nicotinamide, adenine dinucleotide phosphate),
  • 3-hydroxy-3-methylglutaryl-CoA reductase,
  • beta-hydroxy-beta-methylglutaryl coenzyme A reductase,
  • hydroxymethylglutaryl CoA reductase (NADPH),
  • S-3-hydroxy-3-methylglutaryl-CoA reductase,
  • NADPH-hydroxymethylglutaryl-CoA reductase,
  • HMGCoA reductase-mevalonate:NADP-oxidoreductase (acetylating-CoA),
  • 3-hydroxy-3-methylglutaryl CoA reductase (NADPH), und
  • hydroxymethylglutaryl-CoA reductase (NADPH2).


Katalysierte Reaktion[Bearbeiten | Quelltext bearbeiten]

HMG-CoA + 2 NADPH/H+Mevalonat + CoA-SH + 2 NADP+
HMG-CoA wird zu Mevalonat reduziert.

Regulation[Bearbeiten | Quelltext bearbeiten]

Die Regulation der HMG-CoA-Reduktase ist komplex; sie erfolgt u. a. transkriptionell über Transkriptionsfaktoren, die unter Mitwirkung von SCAP (SREBP cleavage activating protein) durch MBTPS1 proteolytisch aus SREBPs (sterol regulatory element binding protein) gewonnen werden. SCAP ist inaktiv, wenn es Cholesterin gebunden hat. Bei steigender Cholesterinkonzentration in der Zelle nimmt die Bildung der HMG-CoA-Reduktase daher ab; außerdem wird das Enzym direkt durch Bindung von Cholesterin und besonders Lanosterol, einem anderen Mevalonatderivat gehemmt. Die HMG-CoA-Reduktase kann auch durch die AMP-aktivierte Proteinkinase (AMPK) reversibel phosphoryliert und damit inaktiviert werden - wenn viel AMP vorliegt, was bei zellulärem Energiemangel der Fall ist, wird so die energieaufwändige Cholesterinsynthese gebremst.

Bei Cholesterinmangel nimmt die Transkription der Gene und damit die Bildung der HMG-CoA-Reduktase wieder zu.

Weitere Hormone, die regulierend auf HMG-CoA-Reduktase wirken sind

Die HMG-CoA-Reduktase ist Angriffspunkt von Medikamenten wie Statinen zur Reduktion von Cholesterin.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Georg Löffler: Biochemie und Pathobiochemie. 7. Auflage. Springer, 2003, ISBN 3-540-42295-1.
  • J. Roitelman, E. H. Olender, S. Bar-Nun, W. A. Dunn, R. D. Simoni: Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum. In: J. Cell Biol. 117 (5), June 1992, S. 959–973. doi:10.1083/jcb.117.5.959. PMC 2289486 (freier Volltext). PMID 1374417.
  • V. Lindgren, K. L. Luskey, D. W. Russell, U. Francke: Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes. In: Proc. Natl. Acad. Sci. U.S.A. 82 (24), Dezember 1985, S. 8567–8571. doi:10.1073/pnas.82.24.8567. PMC 390958 (freier Volltext). PMID 3866240.
  • J. A. Farmer: Aggressive lipid therapy in the statin era. In: Prog. Cardiovasc. Dis. 41 (2), 1998, S. 71–94. doi:10.1016/S0033-0620(98)80006-6. PMID 9790411.
  • Is there a "best" statin drug? In: Johns Hopkins Med. Lett. Health After. 50 15 (11), Januar 2004, S. 4–5. PMID 14983817.
  • Y. L. Lin, T. H. Wang, M. H. Lee, N. W. Su: Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. In: Appl. Microbiol. Biotechnol. 77 (5), Januar 2008, S. 965–973. doi:10.1007/s00253-007-1256-6. PMID 18038131.
  • N. A. Flores: Ezetimibe + simvastatin (Merck/Schering-Plough). In: Current Opinion in Investigational Drugs. 5 (9), September 2004, S. 984–992. PMID 15503655.
  • Department of Chemistry and Biochemistry: Biophysical Methods - Lecture 3: Membrane Proteins. University of Guelph, Oktober 1998. Retrieved 30 Dezember 2013.
  • C. Arnaud, N. R. Veillard, F. Mach: Cholesterol-independent effects of statins in inflammation, immunomodulation and atherosclerosis. In: Curr. Drug Targets Cardiovasc. Haematol. Disord. 5 (2), April 2005, S. 127–134. doi:10.2174/1568006043586198. PMID 15853754.
  • Sorrentino, Sajoscha; Landmesser, Ulf: Nonlipid-lowering effects of statins. In: Curr. Treat. Options Cardiovasc. Med. 7 (6), Dezember 2005, S. 459–466. doi:10.1007/s11936-005-0031-1. PMID 16283973.
  • O. Stüve, S. Youssef, L. Steinman, S. S. Zamvil: Statins as potential therapeutic agents in neuroinflammatory disorders. In: Current Opinion in Neurology. 16 (3), June 2003, S. 393–401. doi:10.1097/01.wco.0000073942.19076.d1 (zurzeit nicht erreichbar). PMID 12858078.
  • J. L. Thorpe, M. Doitsidou, S. Y. Ho, E. Raz, S. A. Farber: Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation. In: Dev. Cell. 6 (2), Februar 2004, S. 295–302. doi:10.1016/S1534-5807(04)00032-2. PMID 14960282.
  • S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, T. M. Moon: The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway. In: Dev. Biol. 373 (2), Januar 2013, S. 258–266. doi:10.1016/j.ydbio.2012.11.024. PMID 23206891.
  • T. E. Meigs, D. S. Roseman, R. D. Simoni: Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation by the nonsterol mevalonate metabolite farnesol in vivo. In: J. Biol. Chem. 271 (14), April 1996, S. 7916–7922. doi:10.1074/jbc.271.14.7916. PMID 8626470.
  • T. E. Meigs, R. D. Simoni: Farnesol as a regulator of HMG-CoA reductase degradation: characterization and role of farnesyl pyrophosphatase. In: Arch. Biochem. Biophys. 345 (1), September 1997, S. 1–9. doi:10.1006/abbi.1997.0200. PMID 9281305.
  • R. K. Keller, Z. Zhao, C. Chambers, G. C. Ness: Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver. In: Arch. Biochem. Biophys. 328 (2), April 1996, S. 324–330. doi:10.1006/abbi.1996.0180. PMID 8645011.
  • E. S. Istvan, M. Palnitkar, S. K. Buchanan, J. Deisenhofer: Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. In: EMBO J. 19 (5), March 2000, S. 819–830. doi:10.1093/emboj/19.5.819. PMC 305622 (freier Volltext). PMID 10698924.
  • J. L. Goldstein, M. S. Brown: Regulation of the mevalonate pathway. In: Nature. 343 (6257), Februar 1990, S. 425–430. doi:10.1038/343425a0. PMID 1967820.
  • D. G. Hardie, J. W. Scott, D. A. Pan, E. R. Hudson: Management of cellular energy by the AMP-activated protein kinase system. In: FEBS Lett. 546 (1), Juli 2003, S. 113–120. doi:10.1016/S0014-5793(03)00560-X. PMID 12829246.
  • L. A. Witters, B. E. Kemp, A. R. Means: Chutes and Ladders: the search for protein kinases that act on AMPK. In: Trends Biochem. Sci. 31 (1), Januar 2006, S. 13–16. doi:10.1016/j.tibs.2005.11.009. PMID 16356723.

Weblinks[Bearbeiten | Quelltext bearbeiten]