Hauptideal

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das Hauptideal ist ein Begriff aus der Ringtheorie, einem Teilgebiet der Algebra. Es stellt eine Verallgemeinerung der aus der Schulmathematik bekannten Teilmengen der ganzen Zahlen dar, die Vielfache einer Zahl sind. Beispiele für solche Teilmengen sind die geraden Zahlen oder die Vielfachen der Zahl 3.

Definition[Bearbeiten | Quelltext bearbeiten]

Ein Hauptideal eines Ringes ist ein von einem einzigen Element erzeugtes Ideal

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Mit den Komplexprodukten

und

gilt jeweils für das von erzeugte

  • Haupt-Linksideal:
  • Haupt-Rechtsideal:
  • (zweiseitige) Hauptideal:

Falls der Ring ein Einselement 1 besitzt, folgt für das

  • Haupt-Linksideal:
  • Haupt-Rechtsideal:
  • (zweiseitige) Hauptideal:

Bemerkungen[Bearbeiten | Quelltext bearbeiten]

  • In kommutativen Ringen stimmen alle drei Arten von Hauptidealen überein, im Allgemeinen jedoch nicht.
  • Nicht jedes Ideal eines Ringes muss ein Hauptideal sein.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Als Beispiel betrachten wir den kommutativen Ring aller Polynome in zwei Unbestimmten über einem Körper . Das von den beiden Polynomen und erzeugte Ideal besteht aus allen Polynomen aus , deren Absolutglied gleich ist. Dieses Ideal ist kein Hauptideal, denn wäre ein Polynom ein Erzeuger von , dann müsste ein Teiler sowohl von als auch von sein, was nur auf die konstanten Polynome ungleich zutrifft. Diese sind aber in nicht enthalten.

Verwandter Begriff[Bearbeiten | Quelltext bearbeiten]

Ein Integritätsring, in dem jedes Ideal ein Hauptideal ist, heißt Hauptidealring.

Literatur[Bearbeiten | Quelltext bearbeiten]