Künstliche Photosynthese

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die künstliche Photosynthese bezeichnet einen chemischen Prozess, bei dem mit Hilfe von Sonnenlicht chemische Produkte hergestellt werden. Analog zur biotischen Photosynthese sollen bei der künstlichen Photosynthese aus Sonnenlicht, Kohlenstoffdioxid und Wasser verschiedene Produkte wie Brennstoffe, Chemikalien oder Kohlenhydrate und Sauerstoff entstehen.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Die Herstellung von Brennstoffen aus Sonnenenergie mittels künstlicher Photosynthese gilt als eine der anspruchsvollsten Aufgaben der Chemie. Ihre Geschichte geht bis in das Jahr 1912 zurück, als der italienische Chemiker Giacomo Ciamician eine später auch in Science veröffentlichte Vorlesung hielt,[1] in der er auf die zivilisatorischen Vorzüge der direkten Solarenergienutzung durch künstliche Photosynthese gegenüber der Kohleverbrennung hinwies.[2] Jedoch erst 1973 bemühte man sich erstmals, dieses Ziel auch tatsächlich zu erreichen.[3] In den 1960er Jahren beschrieb Akira Fujishima die photokatalytischen Eigenschaften von Titandioxid und den Honda-Fujishima-Effekt der Hydrolyse.[4]

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Zur künstlichen Photosynthese wird sowohl die photokatalytische Wasserspaltung gezählt, bei der Wasser in Wasserstoff und Sauerstoff gespalten wird, als auch die Reduktion von Kohlenstoffdioxid mit Licht und auch Prozesse, bei denen komplexere Kohlenwasserstoffe gebildet werden. Dieser letztgenannte Prozess ahmt die natürliche Photosynthese nach, wie sie unter anderem in den Blättern grüner Pflanzen abläuft. Die Verwendung von Kohlenstoffdioxid zum Aufbau von Kohlenhydraten erfolgt bei Pflanzen im Zuge der Dunkelreaktion im Calvin-Zyklus, unabhängig von der Anwesenheit von Licht.

Als Weg zum Erreichen der künstlichen Photosynthese gilt die Nachahmung der natürlichen Photosynthese. Probleme ergeben sich jedoch unter anderem aus dem Umstand, dass es sich bei der Spaltung von Wasser in Wasserstoff und Sauerstoff um Mehrelektronenprozesse handelt, während die Lichtabsorption ein Einphotonenprozess ist. Bis 2007 wurden große Fortschritte in den einzelnen Teilprozessen erzielt, die vollständige Reaktion in einem funktionierenden Gesamtsystem war jedoch noch nicht gelungen.[5] Mittlerweile (Stand 2015) existieren erste Prototypen im Labormaßstab, eine großtechnische Nutzung steht jedoch noch aus.[6]

Die künstliche Photosynthese gilt als vielversprechender Baustein einer zukünftigen nachhaltigen Energieversorgung, die mit der Energiewende erreicht werden soll. Während bei der natürlichen Photosynthese theoretisch maximal 6,7 % des Sonnenlichts chemisch gespeichert werden kann – Werte, die in der Praxis deutlich niedriger ausfallen – bietet die Möglichkeit höherer Wirkungsgrade durch künstliche Photosynthese und somit Vorteile in Bezug auf die zukünftige Energieversorgung.[5] Generell wird davon ausgegangen, dass Anlagen zur künstlichen Photosynthese neben Langzeitstabilität einen Wirkungsgrad von mehr als 10 % aufweisen müssen, um als Alternative in Frage zu kommen. Der bisher höchste erreichte Wirkungsgrad liegt bei 22,4 % (Stand August 2015), wobei statt eines teuren Katalysators auf Platin-Basis Elektroden aus Nickel zum Einsatz kamen, das im Gegensatz zu Platin in großen Mengen kostengünstiger zur Verfügung steht.[7] Verglichen damit erreicht die natürliche Photosynthese einen maximalen theoretischen Wirkungsgrad von ca. 4,5 %. In der Praxis liegen die Werte jedoch deutlich darunter, nur wenige Nutzpflanzen wie in tropischem Klima angebautes Zuckerrohr erzielen Werte über 1 %. Insgesamt werden nur 0,1 % der gesamten auf die Erdoberfläche treffenden Sonnenstrahlung durch natürliche Photosynthese umgewandelt und in Biomasse gespeichert.[8]

Als Bauformen gibt es räumlich getrennte (kompartimentierte) Katalysatoren und Katalysatoren mit gemeinsamem Gasraum.[9] Analog zur elektrolytischen Wasserspaltung fällt bei Letzteren ein Gemisch aus Wasserstoff und Sauerstoff (Knallgas) an, das explosiv ist und daher weiter getrennt wird.

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Giacomo Ciamician, The Photochemistry of the Future. In: Science 36, No. 926, (1912), 385-394, doi:10.1126/science.36.926.385.
  2. Vincenzo Balzani et al., Photochemical Conversion of Solar Energy. In: ChemSusChem 1, (2008), 26-58, doi:10.1002/cssc.200700087.
  3. Jessica Marshall, Solar energy: Springtime for the artificial leaf. In: Nature 510, Issue 7503, 2014, S. 22–24, doi:10.1038/510022a.
  4. Titanium dioxide photocatalysis. In: Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 1, Nr. 1, 29. Juni 2000, S. 1–21. doi:10.1016/S1389-5567(00)00002-2.
  5. a b Nicola Armaroli, Vincenzo Balzani, The Future of Energy Supply: Challenges and Opportunities. In: Angewandte Chemie International Edition 46, (2007), 52–66, doi:10.1002/anie.200602373.
  6. Künstliches Blatt erzeugt Strom. In: National Geographic. Abgerufen am 17. August 2015.
  7. Shannon A. Bonke et al., Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. In: Energy and Environmental Science 8, (2015), 2791-2796, doi:10.1039/c5ee02214b.
  8. Nicola Armaroli, Vincenzo Balzani: Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. In: Chemistry – A European Journal 22, Issue 1, (2016), 32–57, doi:10.1002/chem.201503580.
  9. Eugen S. Andreiadis, Murielle Chavarot-Kerlidou, Marc Fontecave, Vincent Artero: Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells. In: Photochemistry and Photobiology. 87, 2011, S. 946, doi:10.1111/j.1751-1097.2011.00966.x.