Maximumsnorm

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Maximumsnorm, Maximumnorm oder Tschebyschew-Norm[1] ist eine spezielle Norm für Funktionen beziehungsweise für Vektoren oder Matrizen. Sie ist ein Spezialfall der Supremumsnorm.

Definition[Bearbeiten | Quelltext bearbeiten]

Sei ein kompakter Raum und die Menge aller auf reell- oder komplexwertigen stetigen Funktionen. Dann heißt die Funktion , die durch

definiert ist, Maximumsnorm. Die Funktion wird auch mit bezeichnet und erfüllt die drei charakteristischen Eigenschaften einer Norm.[2] Wohldefiniert ist die Maximumsnorm aufgrund des Satzes vom Minimum und Maximum, der die Existenz des Maximums sichert.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Zusammen mit dem Produkt ist der normierte Raum eine kommutative Banachalgebra.[3]

Spezialfälle[Bearbeiten | Quelltext bearbeiten]

Ein wichtiger Spezialfall ist die Maximumsnorm für Vektoren . Wählt man und stattet die Menge mit der diskreten Topologie aus, dann ist ein kompakter Raum und jede reell- oder komplexwertige Funktion auf ist stetig. Somit entspricht der Raum dem n-dimensionalen Vektorraum und die Maximumsnorm auf Vektoren ist ein Spezialfall der Maximumsnorm für stetige Funktionen auf kompakten Mengen. Sieht man eine Matrix als entsprechend langen Vektor im an, ist es auch möglich die Maximumsnorm auf Matrizen zu definieren.

Als Vektornorm[Bearbeiten | Quelltext bearbeiten]

Für einen Vektor nennt man

die Maximumsnorm von .[4] Die Maximumsnorm kann auch als Grenzfall der p-Normen aufgefasst werden. Lässt man gegen unendlich laufen, so erhält man aus der p-Norm die Maximumsnorm.[4] Aus diesem Grund wird die Maximumsnorm für Vektoren auch als ∞-Norm (Unendlich-Norm) bezeichnet.

Als Matrixnorm[Bearbeiten | Quelltext bearbeiten]

Analog zur Vektornorm hat die Maximumsnorm für Matrizen die Darstellung

Diese Norm ist jedoch nicht submultiplikativ, daher wird im Zusammenhang mit Matrizen statt dieser Norm oftmals die submultiplikative Gesamtnorm verwendet.

Beispiele[Bearbeiten | Quelltext bearbeiten]

Spaltenvektor

Für den Spaltenvektor gilt

Die Maximumsnorm von ist also 9.

Funktion

Für die gebrochenrationale Funktion definiert durch gilt

Dies kann durch zweifache Ableitung und Bestimmung der Extremwerte gezeigt werden. Die Maximumsnorm der Funktion auf dem Intervall ist also 1.

Supremumsnorm[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Supremumsnorm

Im Gegensatz zur Maximumsnorm wird die Supremumsnorm nicht für stetige, sondern für beschränkte Funktionen definiert. In diesem Fall ist es nicht notwendig, dass kompakt ist; kann eine beliebige Menge sein. Da stetige Funktionen auf kompakten Räumen beschränkt sind, ist die Maximumsnorm ein Spezialfall der Supremumsnorm.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Tschebyschew-Norm. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 978-3-8274-0439-8.
  2. Maximumnorm. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 978-3-8274-0439-8.
  3. a b Alt: Lineare Funktionalanalysis. 5. Auflage. Springer, 2006, ISBN 3-540-34187-0, S. 38.
  4. a b Harro Heuser: Lehrbuch der Analysis. Teil 2. 14. Auflage Teubner Verlag, 2008, ISBN 978-3-8351-0208-8, S. 11–12.