Methanothermobacter

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Methanothermobacter wolfei)
Zur Navigation springen Zur Suche springen
Methanothermobacter

Methanothermobacter thermautotrophicus

Systematik
Domäne: Archaeen (Archaea)
Abteilung: Euryarchaeota
Klasse: Methanobacteria
Ordnung: Methanobacteriales
Familie: Methanobacteriaceae
Gattung: Methanothermobacter
Wissenschaftlicher Name
Methanothermobacter
Wasserfallen et al. 2000

Methanothermobacter ist eine Gattung der Archaeen-Familie Methanobacteriaceae.[1][2] Die Arten (Spezies) dieser Gattung sind thermophil – sie wachsen gewöhnlich am besten bei Temperaturen zwischen 55 °C und 65 °C[3][4] (etwa in heißen Quellen), unter anaeroben Bedingung auch in Klärschlamm oder tief im Boden (s. u.).

Aufgrund ihrer Bedeutung für den Klimawandel als Methan-Erzeuger hat die Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) die Gattung Methanothermobacter zur Mikrobe des Jahres 2021 gewählt.[3][5]

Typusspezies der Gattung ist M. thermautotrophicus.[1]

Stoffwechsel und Physiologie

[Bearbeiten | Quelltext bearbeiten]

Die Bakterien der Gattung Methanothermobacter verwenden Kohlendioxid (CO2) und Wasserstoff (H2) als Substrate, um Methan (CH4) zur Energiegewinnung zu produzieren.[4]

Von Bakterien ist bekannt, dass sie ihre membranassoziierten Lipide (wie Phospholipide und Glykolipide) im Verlauf des Wachstums und als Reaktion auf Umweltbedingungen verändern können. Bis 2015 gab es jedoch nur wenige Informationen darüber, wie und ob eine solche Anpassung auch bei Archaeen stattfindet. Yoshinaga et al. konnten 2015 zeigen, dass auch bei dem Modellorganismus Methanothermobacter thermautotrophicus (Stamm ΔH) Zellmembrankomponenten während der Wachstumsphasen und als Reaktion auf Wasserstoffverarmung und Nährstofflimitierung (Kalium und Phosphat) anpasst.[6]

Der erste Teil des Gattungsnamens, „methano-“ bezieht sich auf das produzierte Methan, der Mittelteil „-thermo-“ verweist auf die Thermophilie und der letzte Teil „-bacter“ ist eine Reminiszenz an frühere Zeiten, als die Archaeen noch nicht (klar) von Bakterien abgegrenzt waren (vgl. auch die alte Bezeichnung „Archaebakterien“ für die Archaeen).[1]

Die Gattung setzt sich (mit Stand 20. Dezember 2021) nach List of Prokaryotic names with Standing in Nomenclature (LPSN)[1] und National Center for Biotechnology Information (NCBI)[2] wie folgt zusammen:

Gattung Methanothermobacter Wasserfallen et al. 2000[1][2] (veraltet: Methanobacter Wasserfallen et al. 2000[2])

  • M. crinale Cheng et al. 2012 (LPSN, NCBI) – Referenzstamm: Tm2 (alias ACCC:00699, JCM:17393, DSM:24598)
  • M. defluvii (Kotelnikova et al. 1994) Boone 2002 (LPSN, NCBI) – Referenzstamm: ADZ (DSM:7466)
  • M. marburgensis Wasserfallen et al. 2000 (LPSN, NCBI) – Referenzstamm: Marburg (alias DSM:2133, JCM:14651, NBRC:100331, OCM:82)
  • M. tenebrarum Nakamura et al. 2013 (LPSN, NCBI)[7] – Referenzstamm: RMAS (alias DSM:23052, JCM:16532, NBRC:106236)
  • M. thermautotrophicus corrig. (Zeikus & Wolfe 1972) Wasserfallen et al. 2000[8] (LPSN, NCBI), mit orthographischer Variante M. thermoautotrophicus (LPSN) – Typus – Referenzstamm: ΔH (alias Delta H, DSM:1053, ATCC:29096, JCM:10044, NBRC:100330)
  • M. thermoflexus (Kotelnikova et al. 1994) Boone 2002 (LPSN, NCBI) – Referenzstamm: IDZ (alias DSM:7268)
  • M. thermophilus (Laurinavichus et al. 1990) Boone 2002 (LPSN, NCBI) – Referenzstamm: M (alias DSM:6529)
  • M. wolfei corrig. (Winter et al. 1985) Wasserfallen et al. 2000 (LPSN), mit orthographischer Variante M. wolfeii (Winter et al. 1985) Wasserfallen et al. 2000 (LPSN, NCBI) – Referenzstamm: DSM:2970
  • M. sp. CaT2 (NCBI)
  • M. sp. EMTCatA1 (NCBI)
  • M. sp. KEPCO-1 (NCBI)
  • M. sp. MT-2 (NCBI)
  • M. sp. RY3 (NCBI)
  • M. sp. THM-1 (NCBI)
  • M. sp. THM-2 (NCBI)
  • M. sp. THUT3 (NCBI)

Quelle der Angaben zu den Referenzstämmen ist das NCBI und Bonin/Boone (2006).[4]

Methanothermobacter thermautotrophicus

[Bearbeiten | Quelltext bearbeiten]

Diese Spezies wurde 1972 erstmals aus Klärschlamm isoliert. Die Zellen haben die Form unregelmäßig geformter, gekrümmter Stäbchen, die oft Fäden von bis zu 120 μm Länge bilden. Wie das Art-Epitheton ist diese Spezies thermophil und autotroph, d. h. sie gedeiht in Umgebungen mit erhöhten Temperaturen und benötigt keine organischen Wachstumsfaktoren (Suppline). In erster Linie werden H2/CO2 für die Methanogenese und das Wachstum genutzt (eine solche Lebensform wird auch hydrogenotroph genannt[7]). Einige Stämme können auch Formiat zur CO2-Reduktion verwenden. Anaerobe Faulbehälter für Klärschlamm bieten daher günstige Lebensbedingungen. Die Spezies wurde ursprünglich als zur Gattung Methanobacterium beschrieben, später als Typusspezies in die neue Gattung Methanothermobacter gestellt.[4]

Methanothermobacter defluvii

[Bearbeiten | Quelltext bearbeiten]

Auch bei dieser 1993 beschriebenen Art sind die Zellen gebogene oder krumme Stäbchen. Sie wurde ebenfalls aus einem anaeroben Klärschlammfaulbehälter isoliert. Die Art kann in solchen Umgebungen häufig vorkommen.[4]

Methanothermobacter marburgensis

[Bearbeiten | Quelltext bearbeiten]

Der mesophile Referenzstamm Marburg (DSM 21331) wurde aus Klärschlamm in Marburg, Deutschland isoliert und ursprünglich für eine Variante von M. thermautotrophicum gehalten (damals als Methanobacterium thermoautotrophicum geführt). Nach phylogenetischen Analysen wurde dem Stamm der Rang einer eigenen Spezies zugewiesen. Neben diesem Referenzstamm gibt es auch weitere, die in heißen Quellen vorkommen. Die Zellen sind schlanke, zylindrische Stäbchen, die meist paarweise oder in Fäden von bis zu 20 µm Länge vorkommen. Das Wachstum ist autotroph mit H2/CO2, aber es kann, wenn vorhanden, auch Acetat als Kohlenstoff-Quelle assimiliert werden.[4]

Methanothermobacter tenebrarum

[Bearbeiten | Quelltext bearbeiten]

M. tenebrarum wurde in Erdgasfeldern bei der Stadt Niigata, Japan, gefunden. Dort befinden sich die Organismen unter anaeroben Bedingungen am Boden der Erdgasbohrungen. M. tenebrarum ist allgemein in tiefen terrestrischen Bodenschichten zu finden. Die Zellen sind grampositive, unbewegliche (sessile), gerade Stäbchen (bazilliform), an den Polen der Zellstruktur befinden sich Fimbrienbündel. Die Zellen treten einzel, oft aber paarweise auf. Das Art-Epitheton tenebrarum bedeutet „der Dunkelheit(en)“ und verweist auf die Lebensweise in dunklen Umgebungen. Auch diese Spezies lebt hydrogenotroph von H2/CO2 und ist methanogen. Die Organismen benötigen aber auch Casaminosäuren (eine Mischung aus Aminosäuren und einigen sehr kleinen Peptiden, die durch Säurehydrolyse von Casein gewonnen werden[9]), Trypton, Hefeextrakt oder Vitamine für ihr Wachstum, auch Acetat fördert das Wachstum der Zellen.[7]

Das Genom von M. tenebrarum besteht aus einem zirkulär geschlossenen Chromosom mit einer Länge von 1.751.377 bp (Basenpaaren).[7]

Methanothermobacter thermoflexus

[Bearbeiten | Quelltext bearbeiten]

Diese Art wurde ebenfalls aus einem anaeroben Klär­schlamm­faul­behälter isoliert und 1993[4] (bzw. 1994[1][2]) beschrieben Die Zellen sind kommaförmig (gekrümmte Stäbchen), die sich leicht verketten können.[4]

Methanothermobacter thermophilus

[Bearbeiten | Quelltext bearbeiten]

Auch diese Spezies wurde wie 1987 beschrieben aus einem anaeroben Klärschlammfaulbehälter mit für Thermophile günstigen Bedingungen isoliert – diesem letzteren Umstand hat die Art ihr Namens-Epitheton zu verdanken. Die Zellen sind schlanke, unregelmäßig gebogene Stäbchen, die häufig bis zu 30 µm lange Fäden bilden. Im Gegensatz zu den anderen Arten dieser Gattung benötigt M. thermophilus zum Wachstum Coenzym M (2-Sulfanylethansulfonat, HS-CH2-CH2-SO3– [10][11]) und ist daher nicht autotroph.[4]

Methanothermobacter wolfei

[Bearbeiten | Quelltext bearbeiten]

Diese zuerst 1884 als Methanobacter wolfei beschriebene Art wurde inzwischen aufgrund phylogenetischer Untersuchungen als Spezis der Gattung Methanothermobacter reklassifiziert. Ihre Morphologie ist gewöhnlich stäbchenförmig (bazilliform), gleichwohl können sie in Kulturen auch eher kugelförmig (kokkoid) auftreten. M. wolfei ist autotroph, benötigt aber Wolframat (englisch tungstate).[4]

  • A. H. Seifert, S. Rittmann, C. Herwig: Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. In: Applied Energy. 132. Jahrgang, 20. Juli 2014, S. 155–162, doi:10.1016/j.apenergy.2014.07.002.
  • A. Wasserfallen, J. Nolling, P. Pfister, J. Reeve, E. Conway de Macario: Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov. and Methanothermobacter marburgensis sp. nov. In: Int. J. Syst. Evol. Microbiol. 50. Jahrgang, 2000, S. 43–53, doi:10.1099/00207713-50-1-43, PMID 10826786.
  • David R. Boone, Wikkian B. Whitman, Pierre Rouviere: Methanogenesis: Ecology, Physiology, Biochemistry & Genetics. Hrsg.: J. G. Ferry. Chapman & Hall, New York 1994, ISBN 978-0-412-03531-9, Diversity and taxonomy of methanogens, S. 35–80, doi:10.1007/978-1-4615-2391-8_2.

Als Biogaserzeuger spielt Methanothermobacter eine wichtige Rolle bei der nachhaltigen Methanproduktion, außerdem hat das Archaeon einen wichtigen Anteil am Abbau organischer Verbindungen in Kläranlagen.[3]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. a b c d e f LPSN: Methanothermobacter Wasserfallen et al. 2000
  2. a b c d e NCBI: Methanothermobacter Wasserfallen et al. 2000 (genus); graphisch: Methanothermobacter, Lifemap NCBI Version.
  3. a b c Mikrobe des Jahres mag es heiß, auf wissenschaftsjahr.de vom 13. Januar 2021. Memento im Webarchiv vom 22. Januar 2021.
  4. a b c d e f g h i j Adam S. Bonin, David R. Boone; Martin Dworkin, Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt (Hrsg.): The Prokaryotes. 3, Kapitel 11: The order Methanobacteriales. Springer Science & Business Media, 2006, ISBN 0-387-25493-5, S. 241 (google.com [abgerufen am 20. Dezember 2021]). Archaea. Bacteria: Firmicutes, Actinomycetes. Hier: S. 241.
  5. Mikrobe des Jahres 2021 – Methanothermobacter - bedeutend für Wasser, Klima, Energie, Datenblatt der VAAM mit Weblinks zu weiteren Informationen.
  6. Marcos Y. Yoshinaga, Emma J. Gagen, Lars Wörmer, Nadine K. Broda, Travis B. Meador, Jenny Wendt, Michael Thomm, Kai-Uwe Hinrichs: Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability. In: Front. Microbiol., 22. Januar 2015, doi:10.3389/fmicb.2015.00005.
  7. a b c d Microbewiki: Methanothermobacter tenebrarum, Kenyon College, Department of Biology
  8. Microbewiki: Methanothermobacter thermautotrophicus, Kenyon College, Department of Biology
  9. J. Howard Mueller, Everett R. Johnson: Acid Hydrolysates of Casein to Replace Peptone in the Preparation of Bacteriological Media. In: Journal of Immunology. 40. Jahrgang, Nr. 1, 1. Januar 1941, ISSN 1550-6606, S. 33–38 (jimmunol.org).
  10. 2-Sulfanylethanesulfonate, auf PubChem
  11. coenzyme M(1-), auf ChemSpider