Punktprozess
Ein Punktprozess ist ein spezieller stochastischer Prozess und somit Untersuchungsobjekt der Wahrscheinlichkeitstheorie, einem Teilgebiet der Mathematik. Anschaulich modellieren Punktprozesse die zufällige Verteilung von Punkten, im einfachsten Fall auf den positiven reellen Zahlen, im oder in allgemeineren Mengen. Bekanntestes Beispiel eines Punktprozesses ist der Poisson-Prozess, der auch Poisson-Punkt-Prozess genannt wird.
Definition
[Bearbeiten | Quelltext bearbeiten]Sei ein messbarer Raum. Ein Punktprozess ist ein Spezialfall eines zufälligen Maßes. Wir betrachten einen Raum , dessen Elemente s-endliche Zählmaße auf dem Raum sind. Dann ist die Zufallsvariable
- ,
ein Punktprozess.
Simpler Punktprozess
[Bearbeiten | Quelltext bearbeiten]Ein Punktprozess wird simple oder einfach genannt, falls jeder Punkt fast sicher distinkt ist.
Moment Maße
[Bearbeiten | Quelltext bearbeiten]Für einen Punktprozess lassen sich Maße für die Momente und faktoriellen Momente definieren.
n-tes Moment-Maß
[Bearbeiten | Quelltext bearbeiten]Das -te Moment-Maß für eine nicht-negative messbare Funktion ist definiert durch:
n-tes faktorielles Moment-Maß
[Bearbeiten | Quelltext bearbeiten]Betrachte des Maß ( bezeichnet das Diracmaß)
dann ist das -te faktorielle Moment-Maß für Borell-Mengen in definiert als
Das heißt für eine nicht-negative messbare Funktion :
Falls das n-te faktorielle Moment-Maß absolut stetig bezüglich eines Referenz-Maßes (üblicherweise das Lebesgue-Maß) ist, so nennt man die Radon-Nikodým Dichte
für alle Borell-Mengen in Korrelationsfunktion (auch multivariate Intensität).
Paar-Korrelationsfunktion
[Bearbeiten | Quelltext bearbeiten]Sei die Radon-Nikodým-Dichte eines absolut stetigen n-ten faktoriellen Moment-Maß. Dann lässt sich die Paar-Korrelationfunktion oder 2-Punkt Korrelationsfunktion wie folgt bilden
für zwei Punkte .
Definition auf den positiven Zahlen
[Bearbeiten | Quelltext bearbeiten]Eine Folge von Zufallsvariable heißt ein Punktprozess (auf ), wenn gilt:
- Es ist
- Die Folge ist fast sicher streng monoton wachsend, das heißt
Beispiele
[Bearbeiten | Quelltext bearbeiten]Ein einfaches Beispiel für einen Punktprozess erhält man, wenn man eine unabhängig identisch verteilte Folge von Zufallsvariablen , die fast sicher echt positive Werte annehmen, betrachtet. Definiert man dann
- und
- ,
so ist die Folge der monoton wachsend, somit handelt es sich um einen Punktprozess.
Poisson-Punktprozess
[Bearbeiten | Quelltext bearbeiten]Hawkes-Prozess
[Bearbeiten | Quelltext bearbeiten]Ein Hawkes-Prozess ist ein einfacher Punktprozess, der einen Punktprozess modelliert, bei dem das Auftreten eines Ereignisses, einen positiven Einfluss (d. h. erhöhen) auf die Intensität für zukünftige Ereignisse hat.
Die bedingte Intensität folgende Form hat
wobei ein Integralkern ist, der den positiven Einfluss vergangener Ereignisse auf die jetzige Intensität modelliert. Dabei ist entweder der zu erwartende, vorhersagbare, oder deterministische Teil der Intensität. sind Stoppzeiten des i-ten Ereignisses.
Determinantale Punktprozesse
[Bearbeiten | Quelltext bearbeiten]Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Campbellsche Formel
[Bearbeiten | Quelltext bearbeiten]Die Campbellsche Formel beschreibt eine wichtige Eigenschaft eines Punktprozesses zu seiner Intensität . Für alle -integrierbaren Funktionen gilt
Echte Punktprozesse
[Bearbeiten | Quelltext bearbeiten]Man unterscheidet zwischen echten und unechten Punktprozessen. Ein Punktprozess wird dann echt genannt, wenn ein Zufallsvariable mit Werten in und Zufallsvariablen existieren, so dass fast sicher gilt
Es lässt sich zeigen, dass es für jeden Poisson Punktprozesse einen echten Punktprozess gibt, der die gleiche Verteilung auf demselben Raum besitzt.
Erläuterung
[Bearbeiten | Quelltext bearbeiten]Ein Punktprozess auf modelliert die zufällige Verteilung von Punkten auf den positiven Zahlen. Dabei besagt der erste Teil der Definition, dass der erste Punkt der Nullpunkt sein soll. Der zweite Teil besagt, dass die Punkte mit einer Ordnung versehen sind, also schon der Größe nach sortiert sind.
Im obigen Beispiel werden die Zufallsvariablen über über ihre Zuwächse definiert. Dabei entsprechen die Verteilungen der Zuwächse, hier im Beispiel , im allgemeinen Fall , der Verteilung des Abstandes der Punkte. So sind beispielsweise beim Poisson-Prozess die Abstände zwischen zwei Punkten exponentialverteilt.
Der zugehörige Zählprozess
[Bearbeiten | Quelltext bearbeiten]Jedem Punktprozess auf lässt sich durch
ein Zählprozess zuordnen ( bezeichnet hier die charakteristische Funktion auf der Menge ). Anschaulich läuft der Zählprozess von Nullpunkt aus mit gleichbleibender Geschwindigkeit die positiven Zahlen ab und zählt, wie viele Punkt er bis zum Zeitpunkt schon angetroffen hat. Zählprozess und Punktprozess beleuchten hier zwei Aspekte derselben Idee. In ihrer Formalisierung unterscheiden sie sich jedoch deutlich, wie sich schon an ihrer Indexmenge zeigt.
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Yu.K. Belyaev: Stochastic point process. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
- Stover, Christopher: Point Process. In: MathWorld (englisch).
Literatur
[Bearbeiten | Quelltext bearbeiten]- Ludger Rüschendorf: Mathematische Statistik. Springer Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-41996-6, S. 358, doi:10.1007/978-3-642-41997-3.
- David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 978-3-540-21676-6, S. 278–279, doi:10.1007/b137972.