Quotient

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

In der Mathematik und in den Naturwissenschaften bezeichnet der Quotient ein Verhältnis von zwei Größen zueinander, also das Ergebnis einer Division. Der Quotient von zwei ganzen Zahlen (Dividend und Divisor) ist immer eine rationale Zahl und kann als Bruch geschrieben werden.

Ein Quotient dient oftmals der Einordnung eines Wertes in einen Gesamtmaßstab, so z. B. der Intelligenzquotient, der die mit einem Intelligenztest ermittelte Zahl für eine Person mit der ihrer Altersgruppe entsprechenden "durchschnittlichen Intelligenz" in Beziehung setzt. Der Intelligenzquotient 100 steht dabei für den Durchschnitt.

Verhältnisse werden häufig in Prozent angegeben, indem man das Verhältnis mit dem Faktor „100 %“ multipliziert, mit , wodurch sich der Wert des Verhältnisses nicht verändert (Beispiel: ⅕·1 = ⅕·100 % = 20 %).

Besondere Verhältnisse in diesem Sinne sind:

Proportionen[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Dreisatz

Verhältnisgleichungen oder Proportionen sind Gleichungen, die zwei Verhältnisse gleichsetzen: . und heißen auch Vorderglieder, und Hinterglieder der Proportion. Darüber hinaus heißen und Außenglieder sowie und Innenglieder. Die Proportion kann durch Kreuzmultiplikation in eine Gleichung der Form umgeformt werden. Durch Vertauschen der Innenglieder bzw. der Außenglieder einer Proportion entstehen neue Proportionen: und . Darüber hinaus gelten die Gesetze der korrespondierenden Addition und Subtraktion:

Gesetze der korrespondierenden Addition und Subtraktion[Bearbeiten | Quelltext bearbeiten]

Es sei die Proportion gegeben. Dann gelten auch die Proportionen

und und und und .

Fortlaufende Proportionen[Bearbeiten | Quelltext bearbeiten]

Gelegentlich findet sich auch die Schreibweise . Diese fortlaufenden Proportionen sind nicht als eine einzelne Gleichung zu verstehen, sondern sind vielmehr eine Kurzform für die beiden Gleichungen und (bzw. äquivalent und ).[1]

Beispiele[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Walter Gellert, Herbert Kästner, Siegfried Neuber (Hrsg): Lexikon der Mathematik, VEB Bibliographisches Institut Leipzig, 1979. S 447, Proportion.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Quotient – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen