Steinerscher Satz

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Illustration des Steinerschen Satzes:
Drehachse 1 geht durch den Schwerpunkt des Körpers der Masse.
Drehachse 2 ist um den Abstand verschoben.

Der Steinersche Satz (auch Satz von Steiner, Steiner-Regel oder Parallelachsen-Theorem[1]) geht auf Untersuchungen von Jakob Steiner zurück und dient der Berechnung des Trägheitsmomentes eines starren Körpers für parallel verschobene Drehachsen.

Das Trägheitsmoment ist nicht alleinige Eigenschaft eines Körpers, sondern abhängig von der betrachteten Drehachse. Ist das Trägheitsmoment einer Drehachse durch den Massenmittelpunkt bekannt, so kann mit dem Satz von Steiner das Trägheitsmoment für alle Drehachsen, die parallel zu dieser sind, berechnet werden.

Der Satz wird auch verwendet, um Flächenträgheitsmomente von Balken-Querschnitten zu bestimmen.

Anwendung auf Trägheitsmomente[Bearbeiten | Quelltext bearbeiten]

Trägheitsmomente sind meistens für Drehachsen durch den Massenmittelpunkt tabelliert. Falls das Trägheitsmoment für eine dazu parallele Drehachse benötigt wird, kann der Steinersche Satz angewendet werden und das Trägheitsmoment ergibt sich zu:

Dabei ist das Trägheitsmoment des Körpers mit Masse der Drehachse , die durch seinen Massenmittelpunkt (praktisch gleich dem Schwerpunkt) geht und parallel mit Abstand zur Drehachse liegt.

Bei Anwendung des Steinerschen Satzes ist zweierlei zu beachten:

  • Das Trägheitsmoment eines Körpers ist dann am geringsten, wenn die Drehachse durch den Schwerpunkt geht. Das folgt daraus, dass der Steinersche Anteil stets positiv ist, wenn man eine Verschiebung vom Schwerpunkt weg durchführt.
  • Mit mehrmaliger Anwendung des Steinerschen Satzes kann das Trägheitsmoment zu einer beliebigen parallelen Achse berechnet werden, auch wenn das anfangs gegebene Trägheitsmoment nicht durch den Massenmittelpunkt geht.

Anwendung auf Flächenträgheitsmomente[Bearbeiten | Quelltext bearbeiten]

Liegt der Flächenschwerpunkt eines Körper-Querschnitts nicht im Ursprung des Koordinatensystems, kann sein Flächenträgheitsmoment mit dem Steinerschen Satz berechnet werden:

Für wird der Abstand des Flächenschwerpunktes zum Ursprung quadriert, mit der Fläche des Querschnitts multipliziert und auf das (tabellarisch erfasste) Flächenträgheitsmoment addiert. Es ist ersichtlich, dass bei der Steiner-Term wegfällt.

Praktisch ist, dass man mit diesen Formeln komplexe (z. B. T-Träger) in einfache Körper (z. B. Rechtecke) aufteilen kann, deren Flächenträgheitsmoment bereits bekannt ist.

Für gilt dann beispielsweise:

,

wobei die Fläche der Figur ist und bis die durch die Zerlegung entstandenen Teilflächen sind.

Verallgemeinerung durch Trägheitstensoren[Bearbeiten | Quelltext bearbeiten]

Ist der Trägheitstensor im Schwerpunkt des starren Körpers bekannt, so ergibt sich der Trägheitstensor im durch den Vektor parallel verschobenen Koordinatensystem durch die Summe aus und dem Trägheitstensor eines Massepunktes der Masse , also der der Gesamtmasse des starren Körpers, mit dem Ortsvektor , welcher im verschobenen Koordinatensystem zum Schwerpunkt des Körpers weist:

d. h.

wobei

bzw. in Summenkonvention mit dem total antisymmetrischen ε-Tensor

Daher gilt auch

Durch die Verschiebung kann es vorkommen, dass die Achsen des neuen Koordinatensystems nicht mehr mit den Hauptträgheitsachsen durch den neuen Punkt zusammenfallen.

Herleitung[Bearbeiten | Quelltext bearbeiten]

Skizze zur Herleitung

Betrachtet man einen starren Körper in einem Koordinatensystem, dessen Ursprung mit seinem Massenmittelpunkt übereinstimmt und legt die Rotationsachse in z-Richtung, so ist das Trägheitsmoment dieser Achse definiert als

Wobei die Summe über alle Massepunkte des Körpers läuft, der Ort des jeweiligen Massepunktes mit bezeichnet ist und die Rotationsachse auf der Geraden parallel zur z-Achse durch den Punkt liegt.

Ausmultiplizieren der Klammern führt auf

Der erste Term entspricht dem Trägheitsmoment der Rotationsachse durch den Massenmittelpunkt (und parallel zur z-Achse). Der zweite und dritte Term sind Null, da sie der Definition des Massenmittelpunktes entsprechen und dieser gerade im Ursprung liegt.[2] Der vierte Term gibt nach Pythagoras gerade das Abstandsquadrat der Rotationsachse zum Ursprung multipliziert mit der Gesamtmasse des betrachteten Körpers an. Schreibt man den Abstand als , so ergibt sich der Steinersche Satz als

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Hans J. Paus: Physik in Experimenten und Beispielen. Hanser Verlag, 2007, ISBN 978-3-446-41142-5, S. 83 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Douglas C. Giancoli: Physik: Lehr- und Übungsbuch. Pearson Deutschland, 2010, S. 342 (eingeschränkte Vorschau in der Google-Buchsuche).