Ortsvektor

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Zwei Punkte P und Q und ihre Ortsvektoren (hier durch und bezeichnet).

Als Ortsvektor (auch Radiusvektor oder Positionsvektor) eines Punktes bezeichnet man in der Mathematik und in der Physik einen Vektor, der von einem festen Bezugspunkt zu diesem Punkt (Ort) zeigt.[1] In der elementaren und in der synthetischen Geometrie können diese Vektoren als Klassen von verschiebungsgleichen Pfeilen oder gleichwertig als Parallelverschiebungen definiert werden.

Ortsvektoren ermöglichen es, für die Beschreibung von Punkten, von Punktmengen und von Abbildungen die Vektorrechnung zu benutzen. Legt man ein kartesisches Koordinatensystem zugrunde, dann wählt man in der Regel den Koordinatenursprung als Bezugspunkt für die Ortsvektoren der Punkte. In diesem Fall stimmen die Koordinaten eines Punktes bezüglich dieses Koordinatensystems mit den Koordinaten seines Ortsvektors überein.

In der analytischen Geometrie werden Ortsvektoren verwendet, um Abbildungen eines affinen oder euklidischen Raums zu beschreiben und um Punktmengen (wie zum Beispiel Geraden und Ebenen) durch Gleichungen und Parameterdarstellungen zu beschreiben.

In der Physik werden Ortsvektoren verwendet, um die Bewegung eines (oft als punktförmig gedachten) Körpers zu beschreiben. Ortsvektoren zeigen bei Koordinatentransformationen ein anderes Transformationsverhalten als kovariante Vektoren.

Schreibweisen[Bearbeiten | Quelltext bearbeiten]

In der Geometrie wird der Bezugspunkt (Ursprung) in der Regel mit (für lat. origo) bezeichnet. Die Schreibweise für den Ortsvektor eines Punktes ist dann:

Gelegentlich werden auch die Kleinbuchstaben mit Vektorpfeil benutzt, die den Großbuchstaben entsprechen, mit denen die Punkte bezeichnet werden, zum Beispiel:

In der Physik wird der Ortsvektor auch Radiusvektor genannt und mit Vektorpfeil als oder (insbesondere in der theoretischen Physik) halbfett als geschrieben.

Beispiele und Anwendungen in der Geometrie[Bearbeiten | Quelltext bearbeiten]

Verbindungsvektor[Bearbeiten | Quelltext bearbeiten]

Für den Verbindungsvektor zweier Punkte und mit den Ortsvektoren und gilt:

Kartesische Koordinaten[Bearbeiten | Quelltext bearbeiten]

Für die Koordinaten des Ortsvektors des Punktes mit den Koordinaten gilt:

Verschiebung[Bearbeiten | Quelltext bearbeiten]

Eine Verschiebung um den Vektor bildet den Punkt auf den Punkt ab. Dann gilt für die Ortsvektoren:

Drehung um den Ursprung[Bearbeiten | Quelltext bearbeiten]

Eine Drehung in der Ebene mit Drehzentrum um den Winkel gegen den Uhrzeigersinn kann in kartesischen Koordinaten wie folgt mit Hilfe einer Drehmatrix beschrieben werden: Ist der Ortsvektor eines Punktes und der Ortsvektor des Bildpunkts , so gilt:

Affine Abbildung[Bearbeiten | Quelltext bearbeiten]

Eine allgemeine affine Abbildung, die den Punkt auf den Punkt abbildet, kann mit Ortsvektoren wie folgt dargestellt werden:

Hierbei ist der Ortsvektor von , der Ortsvektor von , eine lineare Abbildung und ein Vektor, der eine Verschiebung beschreibt. In kartesischen Koordinaten kann die lineare Abbildung durch eine Matrix dargestellt werden und es gilt:

Im dreidimensionalen Raum ergibt dies:

Entsprechende Darstellungen gibt es auch für andere Dimensionen.

Parameterdarstellung einer Geraden[Bearbeiten | Quelltext bearbeiten]

Die Gerade durch die Punkte und enthält genau die Punkte , deren Ortsvektor die Darstellung

mit

besitzt. Man spricht hier auch von der Parameterform einer Geradengleichung.

Normalenform der Ebenengleichung[Bearbeiten | Quelltext bearbeiten]

Die Ebene durch den Punkt (Stützpunkt) mit Normalenvektor enthält genau die Punkte , deren Ortsvektor die Normalengleichung

erfüllt. Dabei ist der Ortsvektor (Stützvektor) des Stützpunkts und der Malpunkt bezeichnet das Skalarprodukt.

Ortsvektor in verschiedenen Koordinatensystemen[Bearbeiten | Quelltext bearbeiten]

Kartesisches Koordinatensystem

Der durch einen Ortsvektor beschriebene Punkt kann durch die Koordinaten eines Koordinatensystems ausgedrückt werden, wobei der Bezugspunkt des Ortsvektors normalerweise in den Koordinatenursprung gelegt wird.

Kartesische Koordinaten[Bearbeiten | Quelltext bearbeiten]

Üblicherweise wird der Ortsvektor in kartesischen Koordinaten in der Form

definiert. Daher sind die kartesischen Koordinaten gleichzeitig die Komponenten des Ortsvektors.

Zylinderkoordinaten[Bearbeiten | Quelltext bearbeiten]

Der Ortsvektor als Funktion von Zylinderkoordinaten ergibt sich durch Umrechnen der Zylinderkoordinaten in die entsprechenden kartesischen Koordinaten zu

Hier bezeichnet den Abstand des Punktes von der -Achse, der Winkel wird von der -Achse in Richtung der -Achse gezählt. und sind also die Polarkoordinaten des orthogonal auf die --Ebene projizierten Punktes.

Mathematisch gesehen wird hier die Abbildung (Funktion) betrachtet, die den Zylinderkoordinaten die kartesischen Koordinaten des Ortsvektors zuordnet.

Kugelkoordinaten[Bearbeiten | Quelltext bearbeiten]

Spherical polar coordinates.png

Der Ortsvektor als Funktion von Kugelkoordinaten ergibt sich durch Umrechnen der Kugelkoordinaten in die entsprechenden kartesischen Koordinaten zu

Hierbei bezeichnet den Abstand des Punkts vom Ursprung (also die Länge des Ortsvektors), der Winkel wird in der --Ebene von der -Achse aus in Richtung der -Achse gemessen, der Winkel ist der Winkel zwischen der -Achse und dem Ortsvektor.

Physik[Bearbeiten | Quelltext bearbeiten]

Trajektorie[Bearbeiten | Quelltext bearbeiten]

In der Physik wird der Ort eines Punktes (zum Beispiel eines Massenpunkts oder des Schwerpunkts eines Körpers) häufig durch seinen Ortsvektor angegeben. Die Bewegung eines Punktes wird dann durch eine Funktion beschrieben, die jedem Zeitpunkt den Ortsvektor des Massenpunkts zum Zeitpunkt zuordnet. Die so beschriebene Kurve heißt auch Trajektorie oder Bahnkurve.

Die Ableitung dieser vektorwertigen Funktion nach der Zeit t ergibt den Geschwindigkeitsvektor

Durch nochmalige Ableitung ergibt sich der Beschleunigungsvektor

Für die Länge des zwischen den Zeitpunkten und zurückgelegten Weges gilt:

Himmelsmechanik[Bearbeiten | Quelltext bearbeiten]

Um die Position eines Himmelskörpers, der sich auf einer Umlaufbahn um ein Schwerezentrum bewegt, anzugeben, wird in der Himmelsmechanik als Ursprung des Ort- oder Radiusvektors dieses Schwerezentrum gewählt. Der Radiusvektor liegt dann stets in Richtung der Gravitationslinie. Die Strecke des Ortsvektors wird Fahrstrahl genannt. Der Fahrstrahl spielt eine zentrale Rolle beim zweiten Keplerschen Gesetz (Flächensatz).

Wegelement[Bearbeiten | Quelltext bearbeiten]

Ein Wegelement oder Linienelement kann als totales Differential des Ortsvektors dargestellt werden. Allgemein ergibt sich für das vektorielle Wegelement bei Verwendung der Koordinaten :

Mit der obenstehenden Gleichung für die Basisvektoren kann man auch

schreiben. Die Beträge der Ableitungen des Ortsvektors nach den Koordinaten heißen metrische Koeffizienten

Damit kann man das vektorielle Wegelement in der Form

darstellen. Für die bisher betrachteten Koordinatensysteme ergeben sich daraus die folgenden Darstellungsformen:

  • Kartesische Koordinaten:
  • Zylinderkoordinaten:
  • Kugelkoordinaten:

Relativistische Koordinaten[Bearbeiten | Quelltext bearbeiten]

In der speziellen Relativitätstheorie (SRT) werden Raum und Zeit als eine zusammenhängende, vierdimensionale pseudoriemannsche Mannigfaltigkeit, die sogenannte Raumzeit, beschrieben. Ein Punkt auf dieser Mannigfaltigkeit, der durch drei Raumkoordinaten und eine Zeitkoordinate festgelegt wird, wird als Ereignis bezeichnet. Für jeweils zwei Ereignisse kann durch die Minkowski-Metrik ein Linienelement ds definiert werden, das zur Eigenzeit proportional ist:

Hierbei bezeichnet die Minkowski-Metrik und das Vierervektordifferential.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Istvan Szabó: Einführung in die Technische Mechanik. Springer, 1999, ISBN 3-540-44248-0, S. 12.

Literatur[Bearbeiten | Quelltext bearbeiten]