Trennschärfe eines Tests

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Trennschärfe[1][2][3] eines Tests, auch Güte,[4] Macht, Power (englisch für Macht, Leistung, Stärke) eines Tests oder auch Teststärke bzw. Testschärfe, oder kurz Schärfe genannt, beschreibt in der Testtheorie, einem Teilgebiet der mathematischen Statistik, die Entscheidungsfähigkeit eines statistischen Tests. Die Trennschärfe eines Tests gibt die Fähigkeit eines Tests an, Unterschiede (Effekte) zu erkennen, wenn sie in Wirklichkeit vorhanden sind. Die Trennschärfe eines Tests ist genauso wie das Niveau eines Tests ein aus der Gütefunktion (Trennschärfefunktion) abgeleiteter Begriff.

Genauer gesagt gibt die Trennschärfe an, mit welcher Wahrscheinlichkeit ein statistischer Test die abzulehnende Nullhypothese („Es gibt keinen Unterschied“) korrekt zurückweist, wenn die Alternativhypothese („Es gibt einen Unterschied“) wahr ist. Die Trennschärfe des Tests kann also als „Ablehnungskraft“ des Tests interpretiert werden.[5] Hohe Trennschärfe des Tests spricht gegen, niedrige Trennschärfe für die Nullhypothese . Es wird versucht, den Ablehnbereich so zu bestimmen, dass die Wahrscheinlichkeit für die Ablehnung einer „falschen Nullhypothese“ , d. h. für Beibehaltung der Alternativhypothese unter der Bedingung, dass wahr ist, möglichst groß ist: .

Die Trennschärfe hat den Wert ist also – wenn die Wahrscheinlichkeit einen Fehler 2. Art zu begehen bezeichnet – selbst die Wahrscheinlichkeit, einen ebensolchen Fehler zu vermeiden.

Entscheidungstabelle[Bearbeiten | Quelltext bearbeiten]

Wirklichkeit
H0 ist wahr H1 ist wahr
Entscheidung
des Tests …
… für H0 Richtige Entscheidung (Spezifität)
Wahrscheinlichkeit: 1 - α
Fehler 2. Art
Wahrscheinlichkeit: β
… für H1 Fehler 1. Art
Wahrscheinlichkeit: α
richtige Entscheidung
Wahrscheinlichkeit: 1-β (Trennschärfe des Tests, Sensitivität)

Wahl des β-Fehler-Niveaus[Bearbeiten | Quelltext bearbeiten]

Einfluss des Stichprobenumfangs auf die Gütefunktion bzw. Trennschärfe eines einseitigen (in diesem Fall linksseitigen) Tests
Einfluss des Stichprobenumfangs auf die Gütefunktion bzw. Trennschärfe eines zweiseitigen Tests

Für Wirksamkeitsstudien medizinischer Behandlungen schlägt Cohen (1969: 56) für einen 4-mal so hohen Wert wie für das Signifikanzniveau vor. Wenn ist, sollte das -Fehler-Niveau also 20 % betragen. Liegt in einer Untersuchung die -Fehler-Wahrscheinlichkeit (Wahrscheinlichkeit für einen Fehler 2. Art) unter dieser 20 %-Grenze, so ist die Trennschärfe () damit größer als 80 %.

Es sollte dabei bedacht werden, dass -Fehler bei vorgegebenem, festem Signifikanzniveau im Allgemeinen nicht direkt kontrolliert werden können. So ist der -Fehler bei vielen asymptotischen oder nichtparametrischen Tests schlechthin unberechenbar oder es existieren nur Simulationsstudien. Bei einigen Tests dagegen, zum Beispiel dem t-Test, kann der -Fehler kontrolliert werden, wenn der statistischen Auswertung eine Stichprobenumfangsplanung vorausgeht.

Bestimmungsfaktoren der Trennschärfe[Bearbeiten | Quelltext bearbeiten]

Es gibt verschiedene Möglichkeiten zur Erhöhung der Trennschärfe eines Tests. Die Trennschärfe () wird größer:[6]

  • mit wachsender Differenz von (das bedeutet: ein großer Unterschied zwischen zwei Teilpopulationen wird seltener übersehen als ein kleiner Unterschied)
  • mit kleiner werdender Merkmalsstreuung
  • mit größer werdendem Signifikanzniveau (sofern nicht festgelegt ist)
  • mit wachsendem Stichprobenumfang, da der Standardfehler dann kleiner wird: . Kleinere Effekte lassen sich durch einen größeren Stichprobenumfang trennen
  • bei einseitigen Tests im Vergleich zu zweiseitigen Tests: Für den zweiseitigen Test braucht man einen etwa um größeren Stichprobenumfang, um dieselbe Trennschärfe wie für den einseitigen Test zu erreichen.
  • durch die Verwendung des besten bzw. trennschärfsten (englisch most powerful) Tests[7]
  • durch die Reduktion von Streuung in den Daten, z. B. durch den Einsatz von Filtern oder die Wahl von homogenen Untergruppen (Stratifizierung)[8]
  • durch die Erhöhung der Empfindlichkeit des Messverfahrens (Verstärken der Effekte, z. B. durch höhere Dosierung)[9]

Wichtig für die Trennschärfe bzw. Power ist auch die Art des statistischen Tests: Parametrische Tests wie zum Beispiel der t-Test haben, falls die Verteilungsannahme stimmt, bei gleichem Stichprobenumfang stets eine höhere Trennschärfe als nichtparametrische Tests wie zum Beispiel der Wilcoxon-Vorzeichen-Rang-Test. Weichen die angenommene und die wahre Verteilung jedoch voneinander ab, liegt also beispielsweise in Wahrheit eine Laplace-Verteilung zugrunde, während eine Normalverteilung angenommen wurde, können nichtparametrische Verfahren jedoch auch eine wesentlich größere Trennschärfe aufweisen als ihre parametrischen Gegenstücke.

Entgegengesetzte Notation[Bearbeiten | Quelltext bearbeiten]

In manchen Quellen wird – was für Verwirrung sorgen kann – für den Fehler 2. Art und die Trennschärfe die genau entgegengesetzte Notation verwendet, also die Wahrscheinlichkeit, einen Fehler 2. Art zu begehen, mit dem Wert bezeichnet, die Trennschärfe dagegen mit .[10]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

WiktionaryWiktionary: Power – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Ludwig Fahrmeir, Rita Künstler, Iris Pigeot, Gerhard Tutz: Statistik. Der Weg zur Datenanalyse. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2016, ISBN 978-3-662-50371-3, S. 393.
  2. Otfried Beyer, Horst Hackel: Wahrscheinlichkeitsrechnung und mathematische Statistik. 1976, S. 154.
  3. Ludwig von Auer: Ökonometrie. Eine Einführung. 6., durchges. u. aktualisierte Auflage. Springer, 2013, ISBN 978-3-642-40209-8, S. 128.
  4. Otfried Beyer, Horst Hackel: Wahrscheinlichkeitsrechnung und mathematische Statistik. 1976, S. 154.
  5. Ludwig von Auer: Ökonometrie. Eine Einführung. 6., durchges. u. aktualisierte Auflage. Springer, 2013, ISBN 978-3-642-40209-8, S. 128.
  6. J. Bortz: Statistik für Sozialwissenschaftler. Springer, Berlin 1999, ISBN 3-540-21271-X.
  7. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2018, ISBN 978-3-662-56657-2, S. 461
  8. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2018, ISBN 978-3-662-56657-2, S. 461
  9. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2018, ISBN 978-3-662-56657-2, S. 461
  10. Erwin Kreyszig: Statistische Methoden und ihre Anwendungen. 7. Auflage. Göttingen 1998, S. 209ff.