Weylsches Einbettungsproblem

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Das Weylsche Einbettungsproblem ist ein klassisches Problem der Differentialgeometrie und wurde erstmals 1916 von Hermann Weyl formuliert. Es hat Generationen von Mathematikern beschäftigt und wurde 1953 von Louis Nirenberg mit Hilfe einer Monge-Ampèreschen Gleichung gelöst, jedoch unter sehr restriktiven Bedingungen. Das Weylsche Einbettungsproblem ist dem Minkowski-Problem sehr verwandt.

Formulierung[Bearbeiten | Quelltext bearbeiten]

Gibt es zu jeder auf der Einheitssphäre gegebenen positiv definiten quadratischen Form mit positiver gaußscher Krümmung eine konkrete Realisierung durch eine Fläche (d.h. eine Einbettung) im , also eine Fläche, die diese Form als erste Fundamentalform besitzt?

Etwas kürzer und abstrakter: Sei eine positiv definite Metrik auf der Einheitssphäre mit überall positiver Gaußkrümmung. Kann dann die riemannsche Mannigfaltigkeit isometrisch in den eingebettet werden?

Lösung[Bearbeiten | Quelltext bearbeiten]

Bedeutende Antworten auf das Weylsche Einbettungsproblem gaben zunächst Lewy (1938) und später Nirenberg (1953) in einer allgemein als bahnbrechend angesehenen Arbeit. Die bislang letzte Antwort auf das Weylsche Einbettungsproblem gab Heinz 1962, sie lautet: „Ja, wenn die erste Fundamentalform dreimal differenzierbar ist.“ Es ist nicht bekannt, ob eine Einbettung auch mit schwächeren Anforderungen an die Regularität der ersten Fundamentalform möglich ist.

Literatur[Bearbeiten | Quelltext bearbeiten]