Disphenoid

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Ein Disphenoid (auch gleichschenkliges Tetraeder[1]) ist ein Polyeder mit vier deckungsgleichen Dreiecken als Seitenflächen. Ein Disphenoid besteht aus zwei Sphenoiden (zu griechisch σφήν „Keil“), das sind offene Formen mit je zwei Flächen (Dieder).

Charakterisierungssätze[Bearbeiten]

Nach dem Satz von Bang[2] ist ein Disphenoid ein dreidimensionales Simplex mit einer der folgenden äquivalenten Charakterisierungen:

  • Die jeweils gegenüberliegenden (unverbundenen) Kanten haben die gleiche Länge.
  • Die 4 Dreiecke sind kongruent.
  • Die 4 Dreiecke haben denselben Umfang.
  • Die 4 Dreiecke haben dieselbe Fläche.

Ein anderer Charakterisierungssatz ist der folgende:

Ein Tetraeder ist ein Disphenoid dann und nur dann, wenn die Inkugel und die Umkugel konzentrisch sind.[3]

In voller Allgemeinheit gilt sogar folgender Charakterisierungssatz:

Ein Tetraeder ist gleichschenklig dann und nur dann, wenn von den vier Punkten:
Mittelpunkt der Inkugel
Mittelpunkt der Umkugel
Monge-Punkt
Schwerpunkt
mindestens zwei zusammenfallen. In diesem Falle fallen sogar alle vier Punkte zusammen.[3]

Bemerkung:
Die Dreiecke haben alle dieselbe Orientierung.

Spezialfälle[Bearbeiten]

Ist eines der Dreiecke (und damit alle) gleichschenklig, so spricht man von einem tetragonalen Disphenoid. Dann sind 4 Kanten des Disphenoids gleich lang und die übrigen 2 stehen windschief senkrecht aufeinander.

Sind die Dreieckseiten verschieden, so wird das Disphenoid rhombisch genannt.

(Diese Begriffsbildungen stammen aus der Kristallographie.)

Ist ein Dreieck (und damit alle) gleichseitig, dann ist das Disphenoid ein regelmäßiges Tetraeder.

Berechnung eines beliebigen Disphenoids[Bearbeiten]

Ein Disphenoid ist durch eines der 4 kongruenten Dreiecke bestimmt. Da ein Dreieck durch 3 voneinander unabhängige Angaben zur Größe seiner Seiten und/oder Winkel bestimmt ist, ist ein Disphenoid ebenfalls durch 3 voneinander unabhängige Angaben bestimmt.

Beispiele[Bearbeiten]

Disphenoide kommen in der Natur als Kristallform vor: Sie sind die allgemeine Flächenform der Kristallklassen 222 (rhombisch-disphenoidische) und 4 (tetragonal-disphenoidische Klasse).

Literatur[Bearbeiten]

  •  Nathan Altshiller-Court: Modern Pure Solid Geometry. 2. Auflage. Chelsea Publishing Company, Bronx, NY 1964, ISBN 0-8284-0147-0.

Einzelnachweise[Bearbeiten]

  1. Eric W. Weisstein: Isosceles Tetrahedron. In: MathWorld (englisch).
  2. Ross Honsberger, Mathematische Juwelen, Verlag Vieweg, 1982, S. 82
  3. a b  Altshiller-Court: S. 105–108.