Druckmessgerät

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Mechanik eines Rohrfeder-Manometers (vgl. Skala)
Vakuumbarometer auf Quecksilberbasis (Flüssigkeitsbarometer)

Ein Druckmessgerät (auch Manometer – von altgriechisch μανός manós „dünn“ und μέτρον métronMaß, Maßstab“) ist eine Messeinrichtung zur Erfassung und zum Anzeigen des physikalischen Druckes eines Mediums (Flüssigkeit, Gas). In den meisten Anwendungen wird der Relativdruck - also bezogen auf den atmosphärischen Luftdruck - gemessen. Absolutdruckmessinstrumente verwenden ein Vakuum als Bezugsdruck (z.B. Barometer). Differenzdruckmessgeräte messen, wie die anderen auch, einen Druckunterschied, jedoch zwischen zwei beliebigen Systemen.

Einteilung von Druckmessgeräten[Bearbeiten]

Druckmessgeräte werden anhand ihrer Messverfahren in unmittelbare (direkt auf der Definition der physikalischen Größe beruhende) und mittelbare (den Druck aus anderen physikalischen Effekten ableitende) Druckmessgeräte eingeteilt. In der messtechnischen Praxis existieren noch weitere Einteilungen, bspw.:

  • nach Anwendungsbereich in Industrie-, Chemie- oder Standardmanometer.
  • nach Druckbereich in Niederdruck-, Hochdruck oder Vakuum-Messgeräte.
  • nach Genauigkeit in Feinmess- oder Gebrauchsmanometer.
  • nach Verfahren in elektrische, mechanische oder mechatronische Druckmessgeräte.

Unmittelbare Druckmessgeräte[Bearbeiten]

Druckmessgeräte, deren Anzeigewert direkt auf einer der folgenden Beziehungen basiert:

p=\frac{F}{A} oder \Delta p=\Delta h \varrho g

Der Druck p ist physikalisch das Ergebnis einer auf eine Fläche A einwirkenden Kraft F. Das unmittelbarste Druckmessverfahren wäre demnach die Ermittlung einer auf eine gegebene Fläche einwirkende Kraft. Dies ist beim Kolbenmanometer, mit seinem gewichtsbelastetem Kolben von definierter Querschnittsfläche realisiert. Auch Flüssigkeitsmanometer, bei denen der Druck nur noch von der Höhe h und der Dichte \varrho der Flüssigkeitssäule abhängt, werden als unmittelbare Druckmessgeräte angesehen. g ist die Schwerebeschleunigung. \Delta gibt die Verwendung von Differenzgrößen an.

Kolbenmanometer[Bearbeiten]

Beim Kolbenmanometer, auch Druckwaage genannt, wird der Druck durch einen Kolben, der sich gegen eine Kraft verschiebt, angezeigt. Die Kraft kann durch Federn aufgebracht werden (z. B. Dampfkochtopf, da kombiniert mit Überdruckventil) oder durch Gewichte (Präzisionsmanometer). Dieses Prinzip wird zum einen für sehr einfache Manometer benutzt, zum anderen werden auch hochpräzise Kolbenmanometer zum Eichen bzw. Kalibrieren anderer Druckmessgeräte benutzt. Bei diesen Drehkolbenmanometern wird der Kolben zur Vermeidung von Verkantungsmessfehlern in Drehung versetzt.

Eine Sonderbauform sind sogenannte „Popouts“. Bei dieser Bauart wird beim Überschreiten eines bestimmten Druckes lediglich ein Stift aus dem Gehäuse gedrückt. Dies wird zur Anzeige von Filterverstopfung verwendet.

Flüssigkeitsmanometer[Bearbeiten]

McLeod-Manometer

U-Rohr-Manometer[Bearbeiten]

Hier wird der Druck durch Verschieben einer Flüssigkeitssäule angezeigt. Dazu wird ein U-förmiges Glasrohr benutzt, das bis etwa zur Hälfte mit der Sperrflüssigkeit wie Quecksilber oder Wasser gefüllt ist. Wenn dann eine Druckdifferenz zwischen den Schenkeln des U anliegt, verschiebt sich die Flüssigkeitssäule zu der Seite mit dem geringeren Druck. Der Niveauunterschied ist das Maß für die Druckdifferenz.

Hauptartikel: U-Rohr-Manometer

McLeod-Manometer[Bearbeiten]

Das McLeod-Manometer ist ein Kompressions-Flüssigkeits-Manometer benannt nach dessen Erfinder Herbert McLeod. Dabei wird eine Gasmenge mit dem Volumen V_1 auf das Volumen V_2 komprimiert. Im gleichen Verhältnis erhöht sich der Druck von p_1 auf p_2, welcher nach dem Prinzip des U-Rohr-Manometers messbar ist. Aus p_2 kann bei Kenntnis der Volumina anschließend der Ausgangsdruck p_1 über das Boyle-Mariottesche Gesetz berechnet werden.

Ringwaage[Bearbeiten]

Bei der Ringwaage ist ein drehbar gelagerter Hohlring mit einer Trennwand zum Teil mit einer Sperrflüssigkeit gefüllt. Die oberhalb der Flüssigkeit liegenden Kammern sind an die zu messenden Drücke angeschlossen, die den Ring so weit drehen, bis sich ein Kräftegleichgewicht mit einem unten befestigten Gegengewicht einstellt.

Hauptartikel: Ringwaage

Quecksilber als Manometerflüssigkeit[Bearbeiten]

Die Gründe für die bis heute andauernde Verwendung von Quecksilber in Manometern sind zum eine seine vorteilhaft hohe Dichte. Die maximale messbare Druckdifferenz wird z. B. durch die Höhe des U-Rohres einerseits (die üblicherweise durch die Raum- oder Ablesehöhe begrenzt ist), sowie die Dichte der Flüssigkeit andererseits begrenzt. Hier ermöglicht das Quecksilber bei gleicher Rohrlänge die Messung deutlich höherer Differenzdrücke als beispielsweise Wasser. Weiterhin besitzt es eine geringe Kapillarwirkung, so dass das Quecksilber in Glasrohren eine relativ plane Oberfläche, die präzises Ablesen erlaubt, bildet. Quecksilber ist weiterhin gegenüber den meisten Gasen chemisch stabil und erlaubt das Messen von Differenzdrücken zwischen anderen Flüssigkeiten mit denen es sich nicht mischt.

Probleme entstehen andererseits aus dem nach einiger Zeit nötigen Reinigungsprozess. Auch wenn Quecksilber z. B. aus Luft nur sehr geringe Mengen an Feuchtigkeit aufnimmt, muss es doch gereinigt werden, bevor das Messergebnis durch die Herabsetzung der Dichte verfälscht wird. Bis in die siebziger Jahre des zwanzigsten Jahrhunderts war es in Laboratorien üblich, das Quecksilber aus Manometern dazu „auszukochen“. Dies ist zwar einfach, jedoch wegen der dabei trotz allem entstehenden Quecksilberdämpfe aus Gründen des Arbeitsschutzes inakzeptabel. Die Giftigkeit ist auch Problem bei einer möglichen Verunreinigung der Umgebung z. B. bei Glasbruch der Instrumente oder dem Verschütten beim Befüllen oder Entleeren durch zu großen Differenzdruck.

Mittelbare Druckmessgeräte[Bearbeiten]

Mittelbare Druckmesser nutzen sekundäre physikalische Effekte messtechnisch aus. Hierzu haben fast alle Gebiete der Physik beigetragen. Mechanische Druckmessgeräte nutzen meist die elastische Verformung des Messelementes aus. Andere Verfahren nutzen die elektrische, optische oder chemische Wirkungen des Drucks. Als Verfahren, denen die Theorie über Druck als Maß für die Teilchenzahldichte zugrunde liegen, können genannt werden:


Mechanik eines Rohrfeder-Manometers mit [1] Zeigerachse, [2] Segmentzahnrad, [3] Schwenklager, [4] Zugstange, [5] Rohrfeder in Kreisform, [6] Zeiger [8] Prozessanschluss
Prinzip einer Differenzdruckmesszelle mit [1] Plattenfedern [2] negative Druckkammer [3] positive Druckkammer [4] Wellrohre [5] Dichtung [6] Schubstange [7] Hydraulische Kopplung
Rohrfedermanometer an einem Druckminderer

Druckmessgeräte mit federelastischen Messglied[Bearbeiten]

Rohrfeder-Manometer[Bearbeiten]

siehe Hauptartikel: Rohrfeder (Messtechnik)

Rohrfedermanometer sind Druckmessgeräte, deren Messglied je nach zu messenden Druckbereich aus einer kreis-, schnecken- oder schraubenförmig aufgewickelten Rohrfeder, auch Bourdonfeder genannt, besteht. Ähnlich wie eine Luftrüssel-Tröte strebt die Rohrfeder bei Druckbeaufschlagung an sich abzuwickeln. Die Wegänderung, die das Rohrfederende dabei erfährt, wird über eine Zugstange auf ein Segmentzahnrad und damit auf die Zeigerachse übertragen (siehe Abbildung).

Plattenfeder-Manometer[Bearbeiten]

Plattenfedermanometer besitzen als Messglied eine kreisförmige Membranfeder, die meist zwischen zwei Flanschen eingespannt wird. Bei Druckbeaufschlagung erfährt die Membranfeder eine Durchbiegung, die über ein Zeigerwerk in eine Drehbewegung der Zeigerachse umgesetzt wird. Plattenfedermanometer ähneln in ihrem Aufbau Druckmittlern, nur dass die Durchbiegung der Membranfeder nicht auf eine Flüssigkeit, sondern auf ein Zeigerwerk übertragen wird. Der Hub, den die Durchbiegung von Membranfedern auf das Zeigerwerk überträgt, hängt nicht linear vom Druck ab. Um diese Nichtlinearität zu kompensieren, kann entweder eine nichtlineare Skala verwendet werden oder, in der Praxis üblicher, eine Plattenfeder, in die ein Rillenprofil eingepresst ist. Die Auslegung von Membranfedern ist abhängig vom Membrandurchmesser, der Membrandicke, sowie dem Elastizitätsmodul des verwendeten Werkstoffes. Zumeist wird Edelstahl als Membranwerkstoff verwendet. Wird eine höhere Beständigkeit benötigt, werden auch Nickelbasislegierungen wie Monel oder Hastelloy verwendet. Werden Materialien benötigt, die die Fertigung einer Plattenfeder unmöglich oder sehr kostspielig machen, z.B. aus Kunststoffen wie PTFE oder Refraktärmetallen wie Tantal, kommen Membranvorlagen aus dem entsprechenden Werkstoff zum Einsatz.

Kapselfeder-Manometer[Bearbeiten]

Digitalmanometer mit einer Druckmessdose
Funktionsschema eines Dosenbarometers

Kapselfedermanometer sind eine Sonderform des Plattenfedermanometers. Kapselfedern bestehen aus zwei übereinander angeordneten Plattenfedern, die an ihren Rändern miteinander verschweißt sind, so dass ein abgeschlossener Druckraum entsteht ("Messdose"). Das Messmedium wird über ein ebenfalls mit der Kapselfeder dicht verschweißtes Kapillarrohr in die Kapselfeder geleitet. Sie wird im Manometer so gelagert, dass sich beide Seiten der Kapselfeder durchbiegen können und so bei gleicher Druckbeaufschlagung der doppelte Federweg der Plattenfeder messtechnisch ausgenutzt werden kann. Durch die Hintereinanderschaltung von mehreren Kapselfedern lässt sich die Empfindlichkeit noch erhöhen. Kapselfedern werden für die Messung von geringen Drücken eingesetzt. Das Aneroid- oder Dosenbarometer setzt eine evakuierte Kapselfeder zur Bestimmung des atmosphärischen Luftdrucks ein (siehe Abbildung).

Absolut- und Differenzdruckmessgeräte[Bearbeiten]

Praktisch werden meist Druckmessgeräte mit federelastischen Messglied zur Absolut- und Differenzdruckmessung eingesetzt. Für die Absolutdruckmessung ist hierbei der auf der Messfeder lastende atmosphärische Luftdruck durch ein Vakuum zu ersetzen. So wird bei einem Aneroidbarometer das Innere der Kapselfeder evakuiert, so dass der von außen einwirkende Luftdruck die Membranen verformt. Evakuiert man das Gehäuse eines Rohrfedermanometers, so erhält man ebenfalls ein Absolutdruckmessgerät. Bei einem Plattenfedermanometer ist die dem Messdruck abgewandte Seite der Plattenfeder zu evakuieren.

Differenzdruckmessung[Bearbeiten]

Für die Differenzdruckmessung werden meist Plattenfeder-Messsysteme verwendet (siehe Abbildung). Bei gleichem Druck in der positiven (3), wie in der negativen Druckkammer (2), erfahren die Plattenfedern (1) keine Durchbiegung. Erst ein Druckunterschied in den Kammern ruft eine Durchbiegung der Plattenfedern hervor und die Druckdifferenz \Delta p=p_2-p_1 wird durch Übertragung des Federhubs über eine Schubstange (6) auf das Messwerk zur Anzeige gebracht. Die beiden Plattenfedern sind hydraulisch über eine Füllmedium (7) gekoppelt. Die federnden Wellrohre (4) sorgen für die Abdichtung der beiden Druckkammern gegenüber der Atmosphäre. Die beiden Dichtelemente (5) sorgen für einen Überlastschutz: Sobald eine Seite des Differenzdruckmanometers überlastet wird, schließen sie die Druckkammer gegenüber der Atmosphäre sicher ab.

Spezielle Druckmessgeräte[Bearbeiten]

Barometer[Bearbeiten]

Ein Barometer wird zur Bestimmung des Luftdruckes verwendet. Es werden in der Regel Absolutdruckmessgeräte eingesetzt, die den Druck gegenüber einem Vakuum messen. Dieser Druckunterschied führt zu einer Kraft, die auf eine Fläche (meist eine Membran) ausgeübt wird und mittels Kraftmessung bestimmt werden kann. Barometer haben üblicherweise einen Messbereich von 800 bis 1200 mbar Absolutdruck (Druck gegenüber Vakuum).

Drucksensoren[Bearbeiten]

Ein Drucksensor ist ein Messelement, welches die physikalische Größe Druck in eine zum Druck proportionale elektrische Ausgangsgröße umwandelt. Zur Bestimmung des Auflagendrucks wird die Definition des Druckes benutzt und auf eine Kraftmessung zurückgeführt. Es eignen sich somit sämtliche Messverfahren, die auch für die Kraft- und Gewichtsmessung verwendet werden: piezoelektrische Sensoren, Dehnungsmessstreifen aber auch Druckwaagen.

Flüssikeitsfüllungen von Zeigermanometern[Bearbeiten]

Werden Zeigermanometer an Maschinen montiert die stark vibrieren, z.B. Kompressoren oder Hydraulikaggregate, werden häufig Instrumente eingesetzt, deren Gehäuse mit einer transparenten Flüssigkeit gefüllt ist. Meist kommt hier Glycerin zum Einsatz (daher die Bezeichnung Glycerinmanometer), aber auch Silikonöl, und im Pharma- und Lebensmittelbereich auch Weißöl. Die Viskosität der Flüssigkeit dämpft den Zeigerausschlag, wenn der zu messende Druck dynamisch schwankt oder das Gehäuse starken Vibrationen ausgesetzt ist und erleichtert somit die Ablesbarkeit. Durch die schwingungsdämpfenden und schmierenden Eigenschaften der Flüssigkeit wird außerdem die Lebensdauer der mechanischen Teile des Messwerks erhöht. Die Flüssigkeit hat aber nicht direkt mit der Erfassung des Messwertes zu tun.

Sonstiges[Bearbeiten]

  • Biologie
    • Barorezeptoren registrieren den Druck des fließenden Blutes auf die Gefäßwände
    • das Trommelfell ist ein Sensor des Hörorganes, das nur für Druck (Schallwechseldruck) empfindlich ist
  • Technik
    • Schalldruckempfänger, sind Mikrofone einer speziellen Bauart, die dem am Mikrofon empfangenem Schalldruck proportionale elektrische Signale erzeugen

Normung[Bearbeiten]

Europäische Normen[Bearbeiten]

  • DIN EN 472, Druckmeßgeräte - Begriffe
  • DIN EN 837-1, Druckmessgeräte mit Rohrfedern; Teil 1: Maße, Messtechnik, Anforderungen und Prüfung
  • DIN EN 837-2, Druckmessgeräte; Teil 2: Auswahl- und Einbauempfehlungen für Druckmessgeräte
  • DIN EN 837-3, Druckmessgeräte mit Platten- und Kapselfedern; Teil 3: Maße, Messtechnik, Anforderungen und Prüfung

US-amerikanische Normen[Bearbeiten]

  • B40.100-2005: Pressure gauges and Gauge attachments.
  • PTC 19.2-2010 : Performance test code for pressure measurement.

Literatur[Bearbeiten]

  • W. Wuest in Prof. Dr. P. Profos [Hrsg.]: Handbuch der industriellen Messtechnik, Oldenbourg, 2002, ISBN 3486225928
  • H. Julien: Handbuch der Druckmesstechnik mit federelastischen Messgliedern, Alexander Wiegand SE & Co, Klingenberg/Main, 1981, ISBN 39800364-2-1
  • H. Ahrendt, R. Gesatzke, G. Hahn, P. Herrmann, H. Julien, R. Karger, M. Kaufmann, H.-J. Krebs, J. Lucht, A. Müller, R. Müller, B. Vetter: Überdruckmessgeräte nach DIN EN 837, Beuth Verlag, 2007, ISBN 978-3-410-16626-9

Siehe auch[Bearbeiten]