Erdbebensicheres Bauen

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Erdbebensicher)
Wechseln zu: Navigation, Suche

Erdbebensicheres Bauen bezeichnet die gesamten Bemühungen, Bauwerke so anzulegen, auszustatten oder nachzurüsten, dass sie Erdbeben bis zu einer gewissen Stärke überstehen. Dabei unterscheiden wir zwei Ausprägungen.

  • Erdbeben-gerechtes Bauen mit dem Schutzziel, in großen Erdbeben die Fluchtwege offen zu halten
    • Duktiles Tragwerkverhalten per Soll-Bruchstellen bei Überbelastung
    • Ungeschützte Einbauen
  • Erdbeben-sicheres Bauen mit dem Schutzziel der Ausfallsicherheit
    • Elastisches Tragwerkverhalten per Erdbebenisolation
    • Zerstörungsfreies Reaktionsverhalten der Einbauen

Normung[Bearbeiten]

Als Bemessungregeln gelten europaweit seit ihrem erscheinen die Eurocodes. Die „Auslegung von Bauwerken gegen Erdbeben“ ist in der Normenreihe des Eurocode 8 (EN 1998-1 bis 6) geregelt. Die von Land zu Land unterschiedlichen Randbedingungen, wie z.B. die zu erwartenden Erdbebenintensitäten und Bodenbeschleunigungen, werden in den jeweiligen Nationalen Anwenderdokumenten festgehalten.

Deutschland[Bearbeiten]

Deutschlandlastige Artikel Dieser Artikel oder Absatz stellt die Situation in Deutschland dar. Hilf mit, die Situation in anderen Staaten zu schildern.
Logo des Deutschen Instituts für Normung DIN EN 1998
Bereich Bauwesen
Titel Eurocode 8: Auslegung von Bauwerken gegen Erdbeben (6 Teile)
Letzte Ausgabe 2006...2011
ISO -
Logo des Deutschen Instituts für Normung DIN 4149
Bereich Bauwesen
Titel Bauten in deutschen Erdbebengebieten - Lastannahmen, Bemessung und Ausführung üblicher Hochbauten
Letzte Ausgabe 2005-04 (zurückgezogen, aber baurechtlich anzuwenden)
ISO -
Erdbebenzonen nach Eurocode 8, Teil 1, Nationales Anwenderdokument für Deutschland.

Für Deutschland gilt die übernommene Version des Eurocodes, DIN EN 1998 mit ihren 6 Teilen. Vorläufer war die DIN-Norm DIN 4149 „Bauten in deutschen Erdbebengebieten - Lastannahmen, Bemessung und Ausführung üblicher Hochbauten“. Bis auf weiteres ist die bereits normativ zurückgezogene Norm DIN 4149:2005 baurechtlich anzuwenden, da der Eurocode 8 nicht in den Listen der bauaufsichtlich eingeführten Technischen Baubestimmungen der Bundesländer steht.[1]

Wichtiger Bestandteil der deutschen Ausgabe des Eurocodes ist ein Nationales Anwenderdokument. Der Bemessung liegt eine darin enthaltene Erdbebenzonenkarte zugrunde, die auch schon in der DIN 4149 enthalten war. Die in der Karte festgelegten Zonen richten sich nach dem 475-jährlichen Erdbeben, ein Erdbeben mit einer bestimmten Stärke, die in 50 Jahren mit einer Wahrscheinlichkeit von 10 % überschritten wird.

Der Großteil des Bundesgebietes gilt als nicht erdbebengefährdet, das heißt, das im statistischen Mittel einmal in 475 Jahren auftretende Erdbeben weist eine Intensität ≤ 6 auf der Europäischen Makroseismischen Skala (EMS) auf. Die am stärksten gefährdeten Gebiete der Zone 3 (EMS-Intensität I ≥ 7,5) liegen um Basel und Aachen sowie im südlichen Württemberg. Als an sich gefährdet (einschließlich Zone 0) gelten große Gebiete beiderseits des Rheins, Südwürttemberg, das Donautal bis etwa zur Altmühlmündung sowie das Vogtland und seine weitere Umgebung bis etwa Leipzig und schließlich die Alpen und das nähere Alpenvorland.

Entscheidend für die konkrete Gefährdung am Standort ist darüber hinaus der dortige Untergrund.

Bauweise[Bearbeiten]

Als förderlich gelten Bauweisen, die bei horizontaler Belastung große Verformungen zulassen und nur mit Vorankündigung (duktil, nicht spröde) versagen. Wird erdbebengerecht konstruiert und ausgeführt, können das u. a. sein:

  • Stahlbauten
  • Stahlbetonkonstruktionen in Ortbetonbauweise
  • Stahl–Stahlbeton–Verbundbauweise
  • Holzbauweise
  • Fachwerk[2]

Zudem wirken folgende Konstruktionsprinzipien günstig auf den Widerstand gegen Erdbebenbelastung:

  • statisch überbestimmte Systeme,
  • redundante Bauteile,
  • symmetrische Grundrisse der Gebäude,
  • Anordnung vertikal durchlaufender massiver Kerne,
  • horizontale Aussteifungen durch z. B. Schubwände,
  • duktile Materialien und Verbindungen.

Seismische Isolation[Bearbeiten]

Die Entkopplung von Bauwerken von ihrem Untergrund, um die Wirkung der Erdbebenwellen auf das Gebäude zu verringern, kann durch verschiedene Arten der Lagerung erreicht werden. Das wesentliche Prinzip beruht auf einer Erhöhung der Eigenschwingdauer des Gebäudes gemeinsam mit der Lagerung. Die auftretenden 3-dimensional einwirkenden Erdbebenkräfte werden durch Verschiebung im Antwortspektrum des Bauwerkes verringert.

Elastomerlager (große Vollgummilager)[Bearbeiten]

Hoch elastische zylindrische Elastomerlager wirken in alle Richtungen (3D) isolierend und dämpfend. Sie sind bei entsprechender Auslegung zum Schutz gegen die größten Erdbeben geeignet (RSL: Räumlich Schwimmende Lagerung).

Elastomerlager (modifizierte Brückenlager)[Bearbeiten]

Elastomerlager (modifizierte Brückenlager) wirken in horizontaler Richtung (2D; vertikal steif) isolierend und dämpfend. Sie sind bei großer Schubverformungsfähigkeit zum Schutz vor kleineren Erdbeben geeignet (HSL: Horizontal Schwimmende Lagerung).

Bleikernlager[Bearbeiten]

Bleikernlager bestehen aus einem Gummilager mit einem zusätzlichen Bleikern, der durch plastische Verformung dämpfend wirkt und Energie absorbiert.

Gleitlager[Bearbeiten]

Gleitlager ermöglichen die horizontale Bewegung (2D) des Bauwerks auf dem Untergrund und werden meist in Kombination mit anderen Verfahren der Absorption und Dämpfung eingesetzt.

Gleitpendellager[Bearbeiten]

Diese Bauwerklager kombinieren verschiedene Verfahren und verwenden eine konkave Gleitplatte. Sie wurden unter anderem beim Akropolismuseum angewendet.[3]

Weiche Bauteile wie eine schwimmende Lagerung oder die Aufhängung einer Hängebrücke sind weitere Möglichkeiten der Lagerung von Bauwerken zur Verringerung der Belastung aus Erdbeben.

Wissenschaftler an der Universität Marseille haben eine Simulation entwickelt, die nahelegt, dass Rayleigh-Wellen durch konzentrische Ringe aus ausgewählten Materialien abgeleitet werden können und so Gebäude im Zentrum der Anlage geschützt würden.[4] Eine praktische Anwendung ist dafür aber nicht absehbar.

Besondere Gebäude[Bearbeiten]

Kernkraftwerke[Bearbeiten]

Die Nuklearkatastrophe von Fukushima seit März 2011 lenkte weltweit das Augenmerk darauf, dass Kernkraftwerke nicht jedem Beben trotzen können und dass sie trotz ihrer teilweise massiven Bauweise von Flutwellen erheblich beschädigt werden können.

Nach dem verheerenden Erdbeben von Kōbe 1995, bei dem mehr als 6400 Menschen starben, wurden in Japan die Vorschriften verschärft. Seitdem gebaute Reaktoren müssen mindestens Erdstößen der Richter-Magnitude M 7,75 standhalten können; in besonders gefährdeten Regionen sogar Beben bis M 8,25. Das Tōhoku-Erdbeben von 2011 hatte allerdings eine Momenten-Magnitude von M 9,0.

  • Das zeigt auf, dass Richter-Magnituden (als Maß für die freigesetzte Wellenenergie) und Zerstörungsintensitäten gemäß der Mercalli-Sieberg-Skala (als Maß für das globale Ausmaß der Zerstörungen) nicht repräsentativ sein müssen für die konkrete Zerstörungswirkung am einzelnen Bauwerk.
  • Für die Zerstörungswirkung am einzelnen Bauwerk repräsentativ sind drei Größen.
    • Seismische Kennwerte (3D) am Felshorizont des Standorts: Kennwerte für die 3-dimensional wirkende Erdbebenwellen (größte Beschleunigung, Geschwindigkeit, Verschiebung - Erdbebentyp - Dauer der Intensivbewegung)
    • Allfällige Verstärkung bei weichem Boden zwischen dem Felshorizont und dem Fundament ('Baugrund')
    • Erdbebenexposition (von einer vollen bis zu keiner Exposition infolge lokaler Wellenmuster)
  • Beim Töhoku-Erdbeben (Seebeben verantwortlich für die Super-GAUs an drei AKWs in Fukushima, Japan) 'verschluckte' ein Seegraben ca. 130 km außerhalb tatsächlich einen erheblichen Anteil der Wellenenergie, bevor sie das Festland erreichte.

In Kalifornien stehen (Stand November 2011) zwei alte Kernkraftwerke an exponierten Standorten, die im Zusammenhang mit dem Thema Erdbebensicherheit oft erwähnt werden: das Kernkraftwerk San Onofre (seit 1968)[5] und das Kernkraftwerk Diablo Canyon (seit 1984/1985). Letzteres liegt 3 km entfernt von einer Erdbebenspalte (die man während des Baus entdeckte); beide liegen in der Nähe der San-Andreas-Verwerfung.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. http://www.eurocode-online.de/sixcms_upload/media/2171/Eurocodes_DIN-Mitteilungen.pdf.
  2. Hamid Isfahany und Georg Pegels: Erdbebensichere Häuser für Entwicklungsländer. Alexander von Humboldt-Stiftung. Abgerufen am 8. August 2009.
  3. http://www.faz.net/s/RubCD175863466D41BB9A6A93D460B81174/Doc~EE8E97534ED9E4667B8BD4494CC47317D~ATpl~Ecommon~Scontent.html
  4. Suzanne Krause: Tarnkappe gegen Erdbeben. Konzentrische Ringe sichern Gebäude. Abgerufen am 8. August 2009.
  5. Jenseits von Japan: Reaktoren in Risikogebieten , sueddeutsche.de, 16. März 2011