Hofmeister-Reihe

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Hofmeister-Reihe (auch Hofmeister-Serie oder Lyotrope Serie) beschreibt die unterschiedlichen Fällungswirkungen von Salzen. Der Chemiker Franz Hofmeister untersuchte 1888 die proteinfällende Wirkung von Salzen und damit der in Wasser gelösten Ionen.[1] Er fand dabei empirisch Ionen-Sequenzen, die die Stärke des Einflusses auf die in Wasser gelösten Biomoleküle charakterisiert.

Lyotrope Serie[Bearbeiten]

Die Hofmeister-Reihe dient zur Klassifikation der chaotropen Wirkung von Ionen auf Makromoleküle in wässriger Lösung und wird im Folgenden für Anionen und Kationen gegeben:

Anionen
\mathrm{F^{-} \approx SO_{4}^{2-} < HPO_{4}^{2-} < CH_3COO^- < Cl^{-} < NO_{3}^{-} < Br^{-}}\mathrm{ < ClO_{3}^{-} < I^{-} < ClO_{4}^{-} < SCN^{-} < Cl_3CCOO^-}
Kationen
\mathrm{NH_{4}^{+} <  K^{+} <  Na^{+} <  Li^{+} <  Mg^{2+} <   Ca^{2+} < Guanidinium}

In den gegebenen Hofmeister-Reihen nimmt die chaotrope Wirkung der genannten Ionen (und damit der diese Ionen enthaltenden Salze) von links nach rechts zu. Die weiter links stehenden (antichao- oder kosmotropen) Ionen wirken als Fällungsmittel. Sie verstärken die hydrophoben Effekte in wässrigen Proteinlösungen und fördern dadurch Proteinaggregationen über hydrophobe Wechselwirkungen, was zum Ausfall von Proteinen aus der Lösung führt. Die nutzt man zum Aussalzen. Die weiter rechts stehenden (chaotropen) Ionen vermindern hydrophobe Effekte und führen dadurch zur Denaturierung von Proteinen, da die charakteristischen, räumlichen Strukturen von Biomolekülen wesentlich durch hydrophobe Effekte beeinflusst werden.[2] Daher erhöhen die chaotropen Salze, durch die Reduzierung der hydrophoben Wechselwirkungen, die Löslichkeit von hydrophoben Molekülen in Wasser und man spricht von Einsalzen.

Ein Beispiel: Wasser und fette Öle mischen sich nicht. Die Flüssigkeiten bleiben als Folge des hydrophoben Effekts voneinander getrennt. Diesen Effekt mindern chaotrope Salze. Sie stören die hydrophoben Kräfte, die die Proteine in ihrer tertiären bzw. quartären Struktur halten und denaturieren sie.[3] Chaotrope Salze heben die strikte Trennung von Wasser und Fetten auf, sie "stabilisieren" hydrophobe Teilchen oder hydrophobe Molekülgruppen in Wasser. NMR-Relaxations-Studien[4] zeigten, dass sich z. B. große chaotrope Anionen, wie Bromid (Br) und Iodid (I) an hydrophobe Teilchen oder Molekülgruppen anlagern und so polare Stellen auf deren Oberfläche entstehen, welche dann das molekulare Gesamtsystem im Wasser besser löslich macht und den Einsalzeffekt bewirkt. Theoretisch ist die Hofmeister-Reihe noch nicht vollständig verstanden; die wesentlichen Effekte beruhen auf einem sehr komplexen Zusammenspiel von Wechselwirkungen zwischen den Ionen, dem Lösungsmittel Wasser und den gelösten organischen Molekülen. Auffallend ist, dass die chaotrope Wirkung bei einatomigen Anionen mit dem Ionenradius zunimmt, wohingegen sie bei einatomigen Kationen abnimmt. Experimentell wurde auch gefunden, dass die Hofmeister-Reihe nicht nur bei in Wasser gelösten Makromolekülen gültig ist, sondern auch bei kleinen unpolaren Teilchen oder Molekülgruppen die Ionenwirkung auf hydrophobe Effekte beschreibt (siehe z. B. Ref. 4.)

Anwendungen[Bearbeiten]

Chemiker benutzen in der Praxis als chaotrope Salze häufig Perchlorate, Thiocyanate oder Bariumsalze. Als Anwendung der Kenntnisse aus der Hofmeister-Reihe ist die Proteinreinigung zu nennen, genauso wie diese Erkenntnisse in der biochemischen Analytik, nämlich in der Hydrophoben Interaktionschromatographie eine wichtige Rolle spielen. In der Medizin sind die Hofmeister-Reihen auch für die Diuresewirkung von Bedeutung.

Das Aussalzen von Glycerol durch Natriumchlorid wird bei der Seifenherstellung eingesetzt und ist damit neben dem Ausfällen von Tofu mit Gips eine der ältesten technischen Anwendungen der Fällung.

Biotechnologisch erzeugte rekombinante Proteine werden gelegentlich durch Fällung mit Ammoniumsulfat aufkonzentriert. In der Biochemie wird Guanidiniumthiocyanat zur denaturierenden Solubilisierung von hydrophoben Proteinen eingesetzt, beispielsweise bei der Aufreinigung von DNA oder RNA.

Von Salzeffekten verspricht man sich auch Ansätze zur Therapie von Proteinfehlfaltungserkrankungen wie die Alzheimer-Krankheit, die Amyotrophe Lateralsklerose, die BSE und ähnlichen Krankheiten, wo Aggregate von Proteinen wichtig sind. Es gelang z. B. mittels Zugabe bestimmter Salze Proteinklumpen aufzulösen. In einer Studie zur selben Problematik wurde festgestellt, dass antichaotrope Salze (z. B. Ammoniumsulfat), die zur Fällung von Proteinen in einer Lösung benutzt wurden, in der Folge zur Denaturierung von hochmolekularen Metalloproteinen in der gleichen Lösung führen können.[5]

Literatur[Bearbeiten]

  •  Y. Zhang, P. S. Cremer: Interactions between macromolecules and ions: The Hofmeister series. In: Current Opinion in Chemical Biology. 10, Nr. 6, 2006, S. 658–663, doi:10.1016/j.cbpa.2006.09.020.

Einzelnachweise[Bearbeiten]

  1. F. Hofmeister: Zur Lehre von der Wirkung der Salze. In: Arch Exp Pathol Pharmakol. (1888) 24:247-260.
  2. F. Lottspeich & H. Zorbas: Bioanalytik, 2. Aufl. 2006, Spektrum Akademischer Verlag, S. 20.
  3. D. Voet & J. Voet: Biochemistry, 3. Aufl. 2004, Wiley-Verlag, S. 265.
  4. M. Holz (1995): Nuclear Magnetic Relaxation as a Selective Probe of Solute - Solvent and Solute - Solute Interactions in Multi-component Mixtures. In: J. Mol. Liquids, 67, 175–191.
  5. B. Kastenholz (2007): New hope for the diagnosis and therapy of Alzheimer's disease. In: Protein Pept. Lett. Bd. 14, S. 389–393.

Weblinks[Bearbeiten]