Nordatlantikstrom

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 9. Oktober 2016 um 21:59 Uhr durch Leyo (Diskussion | Beiträge) (Bindestrich gehört mitverlinkt). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Wichtige Meeresströmungen

Der Nordatlantikstrom ist eine warme Meeresströmung, die den Golfstrom nordöstlich bis nach Europa verlängert. Er wird durch die thermohaline Zirkulation angetrieben.

Durch seinen Wärmetransport wirkt der Nordatlantikstrom wie eine große Heizung, dank derer große Teile West- und Nordeuropas, wie Irland, Großbritannien und Skandinavien, ein wärmeres Klima aufweisen, als aufgrund ihrer hohen geographischen Breite zu erwarten wäre.

Verlauf

Der Golfstrom trifft vor der Küste Neufundlands mit dem kalten Labradorstrom zusammen und vereinigt sich mit diesem teilweise. Dabei verzweigt er sich und bildet Äste aus. Diese Verlängerung des Golfstroms nach Europa ist der Nordatlantikstrom, auch wenn dieser in einigen Darstellungen oft ebenfalls als Golfstrom bezeichnet wird.

Nördlich von Irland setzt sich ein Teil des Nordatlantikstroms als Norwegischer Strom bis nach Spitzbergen fort, ein anderer Teil driftet in Richtung Island.

Thermohaline Zirkulation

Während der Golfstrom durch Winde und Kontinentalabfälle angetrieben wird, ist der Motor des Nordatlantikstromes das globale Förderband oder die „thermohaline Zirkulation“. Auf dem Weg zum nördlichen Ende des Nordatlantikstroms verdunsten Teile des transportierten warmen Wassers (Evaporation). Dadurch wird der Salzgehalt (die Salinität) erhöht, wodurch das Wasser schwerer wird und zu sinken beginnt. Dort wird die Nordatlantikdrift Teil des Nordatlantik-Tiefenwassers, einer südwärts gerichteten Meeresströmung.

Wirkung

Der Nordatlantikstrom hat einen wesentlichen Einfluss auf das europäische Klima, weswegen er oft als „Warmwasserheizung Europas“ bezeichnet wird. Durch sein warmes Wasser wird auch die Luft über dem Meer erwärmt. Die Winde transportieren dann die Wärme bis weit in den europäischen Kontinent hinein, wodurch in Europa ein deutlich milderes Klima vorherrscht als in anderen Gegenden desselben Breitengrades. Nördlich des 50. Breitenkreises herrscht zum Beispiel in Kanada ein ausgesprochen kaltes Klima, bei dem nur Moose und Flechten gedeihen, und in dieser Tundra nur kälteresistente Tiere wie Karibus leben. Dagegen beschert der Nordatlantikstrom Mitteleuropa Laubwälder und saftige Wiesen, gute Bedingungen für Ackerbau und Viehzucht, und in den besonders nahe am Nordatlantikstrom liegenden Gebieten bewirkt er ganz besondere Möglichkeiten:

In Cornwall und speziell auf den Scilly-Inseln wachsen selbst Pflanzen, die sonst nur in wesentlich wärmeren Klimazonen heimisch sind. Palmen können dort die sonst harten Nord-Winter überleben. Der Logan Botanic Garden in Schottland beispielsweise profitiert stark vom Nordatlantikstrom: Einzelne Exemplare des Mammutblatts (Gunnera manicata) sind über 3 Meter hoch gewachsen.

Veränderungen durch die globale Erwärmung

Index der Entwicklung der atlantischen Zirkulation seit 900 anhand von Anomalien der Meeresoberflächentemperaturen im Absinkgebiet.[1]

Im Zusammenhang mit dem aktuellen Phänomen der globalen Erwärmung haben Wissenschaftler die Befürchtung geäußert, dass der oben unter thermohaliner Zirkulation beschriebene Absinkmechanismus in den nächsten 20-100 Jahren aus dem Gleichgewicht kommen könnte.[2]

Bei einer globalen Erwärmung können zwei Prozesse die Dichte des Meerwassers im Nordatlantikstrom verringern und so dessen Absinken verlangsamen: Wachsende Schmelzwassermengen vom grönländischen Eisschild tragen mehr Süßwasser ein, geringere Wärmeverluste des oberflächennahen Wassers an die Atmosphäre lassen das Volumen des Wassers weniger stark zurückgehen. Das Resultat wäre eine Abschwächung und möglicherweise Verlagerung des Nordatlantikstroms, was einen Klimawechsel in Nordeuropa zur Folge hätte, mit möglicherweise deutlichen Konsequenzen. Ohne die globale Erwärmung würde sich eine maximale Reduktion der durchschnittlichen Temperatur in Europa um fünf Grad Celsius einstellen, die der zu erwartenden globalen Erwärmung in Europa entgegenwirken würde. Ob bzw. ab wann sich die beiden Effekte gegenseitig aufheben würden, ist nicht vorhersagbar; denkbar ist, dass die Temperaturen in Europa zunächst leicht ansteigen und dann dauerhaft um bis zu 5 Grad unter die heutigen Werte abfallen würden.[3][4]

Erkenntnisse aus Sediment- und Eisbohrkernen deuten darauf hin, dass sich vergleichbare Ereignisse in der Vergangenheit schon mehrmals abgespielt haben. Diese sind als Heinrich-Ereignisse bekannt.

Die Entwicklung des Nordatlantikstroms in den vergangenen Jahrzehnten und Jahrhunderten und seine künftige Entwicklung im Rahmen des gegenwärtigen Klimawandels ist Gegenstand intensiver Forschung. Arbeiten zu einer Abschwächung des Nordatlantikstroms über die letzten Dekaden ergaben keine eindeutigen Ergebnisse: Eine Arbeit aus dem Jahr 2005 kam zu dem Schluss, dass es einen Rückgang des Nordatlantikstroms zwischen 1957 und 2004 um 30 % gegeben habe.[5] Dies ließ sich in nachfolgenden Arbeiten nicht bestätigen, weil der Nordatlantikstrom relativ starken kurzfristigen Schwankungen unterliegt; einzelne Messungen lagen im Rahmen dieser Schwankungsbreite und ließen deshalb keine Rückschlüsse auf Entwicklungen zu. Vielmehr zeigten Langzeitmessungen in der Labradorsee bis 2007 keine Abschwächungstendenzen.[6][7][8] Laut einer Anfang 2008 veröffentlichten Studie ist es infolge der Erwärmung seit der letzten Eiszeit zu einer Verstärkung der ozeanischen Zirkulation gekommen; die Studie stellt die These auf, die weitere Erwärmung der mittleren Atmosphärenschichten im Zuge der globalen Erwärmung werde zu einer weiteren Verstärkung der Meeresströmungen führen.[9]

Im Jahr 2011 wurde eine Studie zum Agulhasstrom im indischen Ozean veröffentlicht. Demnach wird dieser nicht komplett an der Ostküste Afrikas reflektiert, sondern fließt zu einem kleinen Teil auch in den Atlantik ab. Dies könnte einen größeren Effekt im Klimageschehen auf der Nordhalbkugel haben als bislang angenommen und damit sich folgende auch beim IPCC publizierte Modellvorstellungen zur Globalen Erwärmung als falsch herausstellen: Darin wird angenommen, dass durch den Süßwassereintrag durch verstärktes Schmelzen in der Polarregion der Nordhalbkugel der Nordatlantikstrom künftig abgeschwächt und durch den verminderten Wärmeeintrag die Erwärmung der Nordhalbkugel gebremst würde. Sollte der Salzwassereintrag aus dem Agulhasstrom – wie dies über die letzten Jahrzehnte beobachtbar war – sich weiterhin verstärken, würde dies auch den Nordatlantikstrom verstärken und damit zu einer zusätzlichen Erwärmung anstelle einer Abkühlung führen.[10]

Der cold blob im Absinkgebiet der nordatlantischen Strömung.

Es gibt verschiedene Versuche, die Entwicklung der atlantischen Strömungen über mehrere Jahrhunderte aus rekonstruierten Anomalien des Meeresspiegels oder der Meerestemperaturen abzuleiten. Beide Parameter werden von der thermohalinen Strömung im Atlantik beeinflusst und könnten als Indiz für deren Stärke in der Vergangenheit dienen. Eine Arbeit aus dem Jahr 2015 kam zu dem Ergebnis, dass es in den vergangenen Jahrzehnten eine ungewöhnliche Abschwächung gegeben habe. Dies würde auch die ungewöhnliche „kalte Blase“ (engl. cold blob) im Absinkgebiet der nordatlantischen Strömung erklären, die sich im Gegensatz zum Rest der Nordhemisphäre abkühlt statt erwärmt.[1][3]

Erforschung

Im Zuge des kalten Krieges wendeten beide damaligen Supermächte (USA und UdSSR) viel Geld und Aufwand darauf, die See sowie Seewind und Seewetter zu erforschen. Dazu wurden Satelliten in geostationäre Umlaufbahnen oder in niedrigere Umlaufbahnen geschossen, zum Beispiel:

Wärmebildkameras an Bord liefern Bilder der Oberflächentemperatur des Meerwassers. Satelliten mit Radar können die Höhe der Meeresoberfläche (die sich durch Gezeiten, Stürme u.a. ändert) und auch ihre Welligkeit messen.

Literatur

  • Martha W. Buckley und John Marshall: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. In: Reviews of Geophysics. 2016, doi:10.1002/2015RG000493 (HTML).

Weblinks

Einzelnachweise

  1. a b Stefan Rahmstorf, Jason E. Box, Georg Feulner, Michael E. Mann, Alexander Robinson, Scott Rutherford und Erik J. Schaffernicht: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. In: Nature Climate Change. 2015, doi:10.1038/nclimate2554.
  2. Kirsten Zickfeld u. a.: Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. In: Climatic Change. Band 82, Nr. 3, Juni 2007, doi:10.1007/s10584-007-9246-3.
  3. a b Martha W. Buckley und John Marshall: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. In: Reviews of Geophysics. 2016, doi:10.1002/2015RG000493 (HTML).
  4. Stefan Rahmstorf: Die Welt fährt Achterbahn (Juli 1999)
  5. H. L. Bryden, H. R. Longworth, S. A. Cunningham: Slowing of the Atlantic meridional overturning circulation at 25° N. In: Nature, Bd. 438 (2005), 1. Dezember
  6. Thomas Haine u. a.: North Atlantic Deep Water Formation in the Labrador Sea, Recirculation through the Subpolar Gyre, and Discharge to the Subtropics. In: Arctic-Subarctic Ocean Fluxes, Defining the Role of the Northern Seas in Climate. 2008, ISBN 978-1-4020-6773-0.
  7. Mojib Latif u. a.: Is the Thermohaline Circulation Changing? In: Journal of Climate. 2006, doi:10.1175/JCLI3876.1.
  8. Dr. Andreas Villwock: Wie reagiert der Golfstrom auf den Klimawandel? Neue Erkenntnisse aus 10-jähriger Studie im subpolaren Nordatlantik. IFM-GEOMAR, 16. März 2007, abgerufen am 12. Juni 2016 (Pressemitteilung).
  9. J. R. Toggweiler, Joellen Russell, Ocean circulation in a warming climate, Nature 451, 286-288, 17. Januar 2008, doi:10.1038/nature06590.
  10. Threading the Climate Needle: The Agulhas Current System Increased Agulhas "leakage" significant player in global climate variability Presseerklärung der National Science Foundation 4/2011