„Forkhead-Box-Protein A2“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
erg
Zeile 39: Zeile 39:
| Orthologe =
| Orthologe =
}}
}}
Das '''Forkhead-Box-Protein A2 (Foxa2)''' (auch: '''Hepatozyten-nukleärer Faktor 3-beta, HNF3b''') ist ein [[Transkriptionsfaktor]] in [[Chordatiere]]n. Der Transkriptionsfaktor Foxa2 bindet als Monomer an DNA. Das DNA-Bindungsmotiv ist dem von Histon 5 ähnlich. Eine Rolle spielt Foxa2 u.a. bei der Gastrulation, bei der Fötalentwicklung des Gastrointestinaltraktes, bei der Pankreasentwicklung und der Regulation der Insulinfreisetzung. Außerdem wurde in Schilddrüse und Prostata über eine Foxa2-Expression berichtet. Defekte von Foxa2 sind wahrscheinlich schon ''in utero'' letal: in der OMIM-Datenbank findet sich jedenfalls keine monogene Krankheit wegen eines angeborenen Foxa2-Defektes.<ref>{{OMIM|602888}}</ref><ref>{{cite journal |author=Besnard V, Wert SE, Hull WM, Whitsett JA |title=Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues |journal=Gene Expr. Patterns |volume=5 |issue=2 |pages=193–208 |year=2004 |month=December |pmid=15567715 |doi=10.1016/j.modgep.2004.08.006 |url=}}</ref>
Das '''Forkhead-Box-Protein A2 (Foxa2)''' (auch: '''Hepatozyten-nukleärer Faktor 3-beta, HNF3b''') ist ein [[Transkriptionsfaktor]] in [[Chordatiere]]n. Der Transkriptionsfaktor Foxa2 bindet als Monomer an DNA. Eine Rolle spielt Foxa2 unter anderem bei der [[Gastrulation]], bei der [[Fetus|fetalen]] Entwicklung des [[Gastrointestinaltrakt]]es, bei der [[Pankreas]]entwicklung und der Regulation der [[Insulin]]freisetzung. Foxa2 reguliert die [[Genexpression]] vieler [[Enzym]]e der [[Leber]]. Außerdem wurde in [[Schilddrüse]] und [[Prostata]] über eine Foxa2-Expression berichtet. Defekte von Foxa2 sind wahrscheinlich schon ''[[in utero]]'' letal: in der [[OMIM]]-Datenbank findet sich jedenfalls keine monogene Krankheit wegen eines angeborenen Foxa2-Defektes.<ref>{{OMIM|602888}}</ref><ref>{{cite journal |author=Besnard V, Wert SE, Hull WM, Whitsett JA |title=Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues |journal=Gene Expr. Patterns |volume=5 |issue=2 |pages=193–208 |year=2004 |month=December |pmid=15567715 |doi=10.1016/j.modgep.2004.08.006 |url=}}</ref>


Die Expression von Foxa2 im Embryo wird von [[TEAD-Protein]]en reguliert, wie an [[Zebrafisch]]en festgestellt werden konnte.<ref>{{cite journal |author=Sawada A, Nishizaki Y, Sato H, ''et al.'' |title=Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor |journal=Development |volume=132 |issue=21 |pages=4719–29 |year=2005 |month=November |pmid=16207754 |doi=10.1242/dev.02059 |url=http://dev.biologists.org/cgi/content/full/132/21/4719}}</ref>
Foxa2 gehört zu den [[Forkhead-Box-Proteine]]n. Die Expression von Foxa2 im [[Embryo]] wird von [[TEAD-Protein]]en reguliert, wie an [[Zebrafisch]]en festgestellt werden konnte.<ref>{{cite journal |author=Sawada A, Nishizaki Y, Sato H, ''et al.'' |title=Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor |journal=Development |volume=132 |issue=21 |pages=4719–29 |year=2005 |month=November |pmid=16207754 |doi=10.1242/dev.02059 |url=http://dev.biologists.org/cgi/content/full/132/21/4719}}</ref>


==Struktur und Genetik==
==Struktur und Genetik==
Zeile 48: Zeile 48:


Aus var 1-RNA wird ein 463 Aminosäuren langes Protein translatiert, das Protein aus var 2 hat 457 Aminosäuren.
Aus var 1-RNA wird ein 463 Aminosäuren langes Protein translatiert, das Protein aus var 2 hat 457 Aminosäuren.

==Gen-Aktivierung durch Foxa2==


==Foxa2 und alternatives Splicen==
==Foxa2 und alternatives Splicen==
Zeile 58: Zeile 56:




==Verschiedene Rollen des Transkriptionsfaktors Foxa2==
==Funktion des Transkriptionsfaktors Foxa2==
<ref>{{cite journal |author=Kimura-Yoshida C, Tian E, Nakano H, ''et al.'' |title=Crucial roles of Foxa2 in mouse anterior-posterior axis polarization via regulation of anterior visceral endoderm-specific genes |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=104 |issue=14 |pages=5919–24 |year=2007 |month=April |pmid=17389379 |pmc=1851592 |doi=10.1073/pnas.0607779104 |url=http://www.pnas.org/content/104/14/5919.full}}</ref><ref>{{cite journal |author=Burtscher I, Lickert H |title=Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo |journal=Development |volume=136 |issue=6 |pages=1029–38 |year=2009 |month=March |pmid=19234065 |doi=10.1242/dev.028415 |url=http://dev.biologists.org/cgi/content/full/136/6/1029/}}</ref>
<ref>{{cite journal |author=Kimura-Yoshida C, Tian E, Nakano H, ''et al.'' |title=Crucial roles of Foxa2 in mouse anterior-posterior axis polarization via regulation of anterior visceral endoderm-specific genes |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=104 |issue=14 |pages=5919–24 |year=2007 |month=April |pmid=17389379 |pmc=1851592 |doi=10.1073/pnas.0607779104 |url=http://www.pnas.org/content/104/14/5919.full}}</ref><ref>{{cite journal |author=Burtscher I, Lickert H |title=Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo |journal=Development |volume=136 |issue=6 |pages=1029–38 |year=2009 |month=March |pmid=19234065 |doi=10.1242/dev.028415 |url=http://dev.biologists.org/cgi/content/full/136/6/1029/}}</ref>


===Foxa2 und die Gastrulation===
===Gastrulation===


Mangold und Spemann haben schon 1924 den [[Spemann-Organisator]] für Amphibien beschrieben. Diese Struktur, die für die Musterbildung bei der Fötalentwicklung von [[Chordatiere]]n unverzichtbar ist, wird durch das Foxa2-Protein mitgeprägt. Die Expression von Foxa2 im Organisator hängt ab FoxH1/Smad. Eine gegenseitige Abhängigkeit existiert zwischen der Foxa2- und der Brachyury/T-Expression. Von Foxa2 hängen weitere Transkriptionsfaktoren ab wie Noto, Shh, Foxa1, Foxd4, MLF1, Pim1, Smoc1, wie Templin und Kollegen 2008 publiziert haben.<ref>{{cite journal |author=Tamplin OJ, Kinzel D, Cox BJ, Bell CE, Rossant J, Lickert H |title=Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives |journal=BMC Genomics |volume=9 |issue= |pages=511 |year=2008 |pmid=18973680 |pmc=2605479 |doi=10.1186/1471-2164-9-511 |url=http://www.biomedcentral.com/1471-2164/9/511}}</ref>
Mangold und Spemann haben schon 1924 den [[Spemann-Organisator]] für Amphibien beschrieben. Diese Struktur, die für die Musterbildung bei der Fötalentwicklung von [[Chordatiere]]n unverzichtbar ist, wird durch das Foxa2-Protein mitgeprägt. Die Expression von Foxa2 im Organisator hängt ab FoxH1/Smad. Eine gegenseitige Abhängigkeit existiert zwischen der Foxa2- und der Brachyury/T-Expression. Von Foxa2 hängen weitere Transkriptionsfaktoren ab wie Noto, Shh, Foxa1, Foxd4, MLF1, Pim1, Smoc1, wie Templin und Kollegen 2008 publiziert haben.<ref>{{cite journal |author=Tamplin OJ, Kinzel D, Cox BJ, Bell CE, Rossant J, Lickert H |title=Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives |journal=BMC Genomics |volume=9 |issue= |pages=511 |year=2008 |pmid=18973680 |pmc=2605479 |doi=10.1186/1471-2164-9-511 |url=http://www.biomedcentral.com/1471-2164/9/511}}</ref>


===Rolle des Foxa2 bei der Entwicklung dopaminerger Neuronen===
===Entwicklung dopaminerger Neuronen===


Der Verlust dopaminerger Neuronen im Mittelhirn gilt als ursächlich für die Parkinson-Krankheit. Foxa2 ist sowohl an der Entwicklung dieser Neuronen beteiligt als auch wahrscheinlich an deren frühzeitiger Degeneration. Ausgehend vom Organisator wird durch Kontrolle von Foxa2 die erste Anlage des zentralen Nervensystems angelegt, das [[Neuralrohr]]. Foxa2-Expression bestimmt die sogenannte ''floor plate'' des Neuralrohrs. Von hier entwickeln sich aus Foxa2-positiven Zellen dopaminerge Neuronen.<ref name="PLoS_kittappa">{{cite journal |author=Kittappa R, Chang WW, Awatramani RB, McKay RD |title=The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age |journal=PLoS Biol. |volume=5 |issue=12 |pages=e325 |year=2007 |month=December |pmid=18076286 |pmc=2121110 |doi=10.1371/journal.pbio.0050325 |url=http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050325}}</ref><ref>{{cite journal |author=Arenas E |title=Foxa2: the rise and fall of dopamine neurons |journal=Cell Stem Cell |volume=2 |issue=2 |pages=110–2 |year=2008 |month=February |pmid=18371430 |doi=10.1016/j.stem.2008.01.012 |url=}}</ref>
Der Verlust dopaminerger Neuronen im Mittelhirn gilt als ursächlich für die Parkinson-Krankheit. Foxa2 ist sowohl an der Entwicklung dieser Neuronen beteiligt als auch wahrscheinlich an deren frühzeitiger Degeneration. Ausgehend vom Organisator wird durch Kontrolle von Foxa2 die erste Anlage des zentralen Nervensystems angelegt, das [[Neuralrohr]]. Foxa2-Expression bestimmt die sogenannte ''floor plate'' des Neuralrohrs. Von hier entwickeln sich aus Foxa2-positiven Zellen dopaminerge Neuronen.<ref name="PLoS_kittappa">{{cite journal |author=Kittappa R, Chang WW, Awatramani RB, McKay RD |title=The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age |journal=PLoS Biol. |volume=5 |issue=12 |pages=e325 |year=2007 |month=December |pmid=18076286 |pmc=2121110 |doi=10.1371/journal.pbio.0050325 |url=http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050325}}</ref><ref>{{cite journal |author=Arenas E |title=Foxa2: the rise and fall of dopamine neurons |journal=Cell Stem Cell |volume=2 |issue=2 |pages=110–2 |year=2008 |month=February |pmid=18371430 |doi=10.1016/j.stem.2008.01.012 |url=}}</ref>
Zeile 84: Zeile 82:
===Entwicklung des Pankreas und Regulation der Insulin-Freisetzung===
===Entwicklung des Pankreas und Regulation der Insulin-Freisetzung===
<ref>{{cite journal |author=Howell JJ, Stoffel M |title=Nuclear export-independent inhibition of Foxa2 by insulin |journal=J. Biol. Chem. |volume=284 |issue=37 |pages=24816–24 |year=2009 |month=September |pmid=19589781 |doi=10.1074/jbc.M109.042135 |url=}}</ref><ref>{{cite journal |author=Gao N, White P, Doliba N, Golson ML, Matschinsky FM, Kaestner KH |title=Foxa2 controls vesicle docking and insulin secretion in mature Beta cells |journal=Cell Metab. |volume=6 |issue=4 |pages=267–79 |year=2007 |month=October |pmid=17908556 |doi=10.1016/j.cmet.2007.08.015 |url=http://www.cell.com/immunity/abstract/S0092-8674(00)80546-2}}</ref>
<ref>{{cite journal |author=Howell JJ, Stoffel M |title=Nuclear export-independent inhibition of Foxa2 by insulin |journal=J. Biol. Chem. |volume=284 |issue=37 |pages=24816–24 |year=2009 |month=September |pmid=19589781 |doi=10.1074/jbc.M109.042135 |url=}}</ref><ref>{{cite journal |author=Gao N, White P, Doliba N, Golson ML, Matschinsky FM, Kaestner KH |title=Foxa2 controls vesicle docking and insulin secretion in mature Beta cells |journal=Cell Metab. |volume=6 |issue=4 |pages=267–79 |year=2007 |month=October |pmid=17908556 |doi=10.1016/j.cmet.2007.08.015 |url=http://www.cell.com/immunity/abstract/S0092-8674(00)80546-2}}</ref>

<ref>{{cite journal |author=Raum JC, Gerrish K, Artner I, ''et al.'' |title=FoxA2, Nkx2.2, and PDX-1 regulate islet beta-cell-specific mafA expression through conserved sequences located between base pairs -8118 and -7750 upstream from the transcription start site |journal=Mol. Cell. Biol. |volume=26 |issue=15 |pages=5735–43 |year=2006 |month=August |pmid=16847327 |pmc=1592775 |doi=10.1128/MCB.00249-06 |url=http://assets0.pubget.com/pdf/16847327.pdf |format=PDF}}</ref>


===Regulation der Glykogensynthese===
===Regulation der Glykogensynthese===

Version vom 1. April 2010, 11:15 Uhr

Dieser Artikel wurde am 23. März 2010 auf den Seiten der Qualitätssicherung eingetragen. Bitte hilf mit, ihn zu verbessern, und beteilige dich bitte an der Diskussion!
Folgendes muss noch verbessert werden: Relevanz scheint gegeben, doch so kein Artikel. Vollprogramm --Steindy 15:46, 23. Mär. 2010 (CET)
zur Zeit Baustelle, daher bitte nicht kritisieren--B.Kleine 15:19, 31. Mär. 2010 (CEST)
Foxa2
Foxa2
Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 463 bzw. 457 Aminosäuren
Bezeichner
Gen-Name FOXA2
Externe IDs
Vorkommen
Homologie-Familie Hovergen
Übergeordnetes Taxon Chordatiere[1]

Das Forkhead-Box-Protein A2 (Foxa2) (auch: Hepatozyten-nukleärer Faktor 3-beta, HNF3b) ist ein Transkriptionsfaktor in Chordatieren. Der Transkriptionsfaktor Foxa2 bindet als Monomer an DNA. Eine Rolle spielt Foxa2 unter anderem bei der Gastrulation, bei der fetalen Entwicklung des Gastrointestinaltraktes, bei der Pankreasentwicklung und der Regulation der Insulinfreisetzung. Foxa2 reguliert die Genexpression vieler Enzyme der Leber. Außerdem wurde in Schilddrüse und Prostata über eine Foxa2-Expression berichtet. Defekte von Foxa2 sind wahrscheinlich schon in utero letal: in der OMIM-Datenbank findet sich jedenfalls keine monogene Krankheit wegen eines angeborenen Foxa2-Defektes.[2][3]

Foxa2 gehört zu den Forkhead-Box-Proteinen. Die Expression von Foxa2 im Embryo wird von TEAD-Proteinen reguliert, wie an Zebrafischen festgestellt werden konnte.[4]

Struktur und Genetik

Das FOXA2-Gen des Menschen liegt auf Chromosom 20 im Bereich 20p11. Es gibt zwei Transkriptionsvarianten [5]. Die längere Variante (var 2) enthält ein nichttranslatiertes Exon 1 und die translatierten Exone 2 und 3, während die kürzere Variante (var 1) aus zwei Exonen hervorgeht, von denen beide teilweise translatiert werden.

Aus var 1-RNA wird ein 463 Aminosäuren langes Protein translatiert, das Protein aus var 2 hat 457 Aminosäuren.

Foxa2 und alternatives Splicen

Calcitonin (Calc) und Calcitonin-Gen-related Peptide (CGRP) sind alternative Splice-Produkte des gleichen Gens und gelten als Beispiel für alternatives Splicen. Das Gen hat sechs Exone. In Neuronen wird die CGRP-mRNA generiert aus den Exonen 1, 2, 3, 5 und 6. In Schilddrüsen-C-Zellen dagegen wird dagegen die Calc-mRNA generiert aus den Exonen 1, 2, 3 und 4. Zhou und Baranika habe vor kurzem gezeigt, dass Foxa2 (und Fox-1) durch Bindung an ein UGCAUG-RNA-Stück in der Nähe der 3’-Splicing-Stelle das Processing in Richtung CGRP verschieben. [6]

Stammesgeschichte von Foxa2 und anderen Forkhead-Box-Proteinen

Funktion des Transkriptionsfaktors Foxa2

[7][8]

Gastrulation

Mangold und Spemann haben schon 1924 den Spemann-Organisator für Amphibien beschrieben. Diese Struktur, die für die Musterbildung bei der Fötalentwicklung von Chordatieren unverzichtbar ist, wird durch das Foxa2-Protein mitgeprägt. Die Expression von Foxa2 im Organisator hängt ab FoxH1/Smad. Eine gegenseitige Abhängigkeit existiert zwischen der Foxa2- und der Brachyury/T-Expression. Von Foxa2 hängen weitere Transkriptionsfaktoren ab wie Noto, Shh, Foxa1, Foxd4, MLF1, Pim1, Smoc1, wie Templin und Kollegen 2008 publiziert haben.[9]

Entwicklung dopaminerger Neuronen

Der Verlust dopaminerger Neuronen im Mittelhirn gilt als ursächlich für die Parkinson-Krankheit. Foxa2 ist sowohl an der Entwicklung dieser Neuronen beteiligt als auch wahrscheinlich an deren frühzeitiger Degeneration. Ausgehend vom Organisator wird durch Kontrolle von Foxa2 die erste Anlage des zentralen Nervensystems angelegt, das Neuralrohr. Foxa2-Expression bestimmt die sogenannte floor plate des Neuralrohrs. Von hier entwickeln sich aus Foxa2-positiven Zellen dopaminerge Neuronen.[10][11]

Verlust beider Foxa2-Allele führt in utero zu Lethalität. Mäuse, die nur ein Foxa2-Allel tragen, entwickeln als erwachsene Tiere Ausfallerscheinungen des Bewegungsapparates. Bei Tieren, die diese Ausfälle zeigten, war gleichzeitig ein Verlust dopaminerger Neuronen in der Substantia nigra festzustellen; dieses Bild entspricht der Parkinson-Krankheit des Menschen.[10]

[12]

Entwicklung der Leber

Die Entwicklung der Leber innerhalb der Fötalentwicklung läuft in zwei Stufen ab: Zuerst werden innerhalb des Vorderdarm-Endothels Zellen befähigt, auf Organ-spezifische Signale zu reagieren, danach erfolgt die Expression Leber-spezifischer Gene. Beim ersten Schritt sind sowohl Foxa1 als auch Foxa2 gemeinsam beteiligt. Ohne die Expression beider Gene kann sich keine Leber entwickeln, da offensichtlich keine Reaktion auf weitere notwendige Stimulatoren wie z.B. Fibroblasten-Wachstumsfaktor erfolgen kann. Mäuse-Föten, die defekte Foxa1- und Foxa2-Gene besitzen, entwickeln sich bis zu Tag 8,5 in gleicher Weise wie Kontroll-Föten. Danach bleibt die Entwicklung zurück und die Föten sterben vor der Geburt ab.

Die wichtigste Veränderung gegenüber Normaltieren betrifft das Ausbleiben der Leberanlage, das Fehlen von Hepatoblasten. Tiere, bei denen entweder das Foxa1-Gen oder das Foxa2-Gen defekt waren, konnten dagegen die Leberanlage entwickeln. Andere Gene, bei denen Defekte ebenfalls die Leberentwicklung stören, wirken erst, nachdem die Leber angelegt ist: Hex, HNF4alpha, HNF1beta oder HNF6. [13]

Auch die spätere Entwicklung der Gallengänge hängt von der gemeinsamen Expression von Foxa1 und Foxa2 ab: Werden beide Gene nach der Entwicklung der Leberanlage ausgeschaltet, entwickelt sich in der fötalen Leber ein vergrößerter Gallengang-Aufbau: wegen Foxa1/a2-Unterdrückung wird verstärkt Interleukin-6 (IL-6) gebildet, das das Wachstum der Cholangiozyten fördert. Bei Abwesenheit von Foxa1/a2 kann der Glukokortikoid-Rezeptor (ein Kernrezeptor und Transkriptionsfaktor) nicht an den IL-6-Genpromotor binden und die IL-6 Expression unterdrücken.[14]

Entwicklung des Pankreas und Regulation der Insulin-Freisetzung

[15][16]

[17]

Regulation der Glykogensynthese

[18]

Regulation der Leberenzymexpression im Erwachsenen

Die balancierte Synthese und der Transport von Gallensäuren der Leber ist auf Foxa2 angewiesen. Fehlte das Protein in der Leber von Mäusen, erhöhte sich der Serumspiegel der Gallensäuren -- eine milde Cholestase stellte sich ein, die sich bei Zufuhr von Cholin verstärkte. Auf ihren Foxa2-Gehalt untersuchte Nieren von Menschen, die unter PSC oder unter Gallengangatresie litten, wiesen entsprechenden Mangel auf. Ursache war eine unzureichende Expression der Gallensalz-Membrantransporter Mpr2/3/4, die offensichtlich von Foxa2 reguliert wird. Die fehlende Regulation weiterer Gene im Gallensäurenstoffwechsel ist ein Faktor des so genannten ER-Stress, eines Symptoms der Cholestase.[19][20]

[21][22]

FOXA2 und Krankheiten des Menschen

Überexpression in Krebs und Metastasen

Die von Foxa2 regulierten Enzyme der Leber im Cholesterinstoffwechsel sind möglicherweise für die Progression von Prostatakrebs zum Stadium der Androgenunabhängigkeit verantwortlich. Metastasen kolorectaler Karzinome in der Leber überexprimieren Foxa2, was mit Überexpression von HNF6 einhergeht.[23][24]

Vermutete Rolle bei Sepsis

In Tiermodellen haben Berg und Kollegen 2006 nachgewiesen, das der Gehalt an der Serinprotease Protein C einen frühen prognostischer Parameter darstellt, anhand dessen der Ausgang eines Septischen Geschehens vorher gesagt werden kann: je niedriger der Gehalt an Protein C, umso wahrscheinlicher ein fataler Ausgang. In der gleichen Publikation stellen die Autoren fest, dass verringerte Foxa2-Expression als Auslöser der Protein-C-Reduktion angesehen werden kann. Damit kommt der Herabregulierung von Foxa2 im Verlauf einer Infektion, die in eine Sepsis mit fatalen Folgen übergehen kann, eine wichtige Rolle zu.[25]

Einzelnachweise

  1. Orthologe bei eggNOG
  2. Forkhead-Box-Protein A2. In: Online Mendelian Inheritance in Man. (englisch)
  3. Besnard V, Wert SE, Hull WM, Whitsett JA: Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. In: Gene Expr. Patterns. 5. Jahrgang, Nr. 2, Dezember 2004, S. 193–208, doi:10.1016/j.modgep.2004.08.006, PMID 15567715.
  4. Sawada A, Nishizaki Y, Sato H, et al.: Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor. In: Development. 132. Jahrgang, Nr. 21, November 2005, S. 4719–29, doi:10.1242/dev.02059, PMID 16207754 (biologists.org).
  5. 'FOXA2' Transkriptionsvarianten
  6. Zhou HL, Baraniak AP, Lou H: Role for Fox-1/Fox-2 in mediating the neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA processing. In: Mol. Cell. Biol. 27. Jahrgang, Nr. 3, Februar 2007, S. 830–41, doi:10.1128/MCB.01015-06, PMID 17101796, PMC 1800674 (freier Volltext) – (iu.edu [PDF]).
  7. Kimura-Yoshida C, Tian E, Nakano H, et al.: Crucial roles of Foxa2 in mouse anterior-posterior axis polarization via regulation of anterior visceral endoderm-specific genes. In: Proc. Natl. Acad. Sci. U.S.A. 104. Jahrgang, Nr. 14, April 2007, S. 5919–24, doi:10.1073/pnas.0607779104, PMID 17389379, PMC 1851592 (freier Volltext) – (pnas.org).
  8. Burtscher I, Lickert H: Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. In: Development. 136. Jahrgang, Nr. 6, März 2009, S. 1029–38, doi:10.1242/dev.028415, PMID 19234065 (biologists.org).
  9. Tamplin OJ, Kinzel D, Cox BJ, Bell CE, Rossant J, Lickert H: Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives. In: BMC Genomics. 9. Jahrgang, 2008, S. 511, doi:10.1186/1471-2164-9-511, PMID 18973680, PMC 2605479 (freier Volltext) – (biomedcentral.com).
  10. a b Kittappa R, Chang WW, Awatramani RB, McKay RD: The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. In: PLoS Biol. 5. Jahrgang, Nr. 12, Dezember 2007, S. e325, doi:10.1371/journal.pbio.0050325, PMID 18076286, PMC 2121110 (freier Volltext) – (plosjournals.org).
  11. Arenas E: Foxa2: the rise and fall of dopamine neurons. In: Cell Stem Cell. 2. Jahrgang, Nr. 2, Februar 2008, S. 110–2, doi:10.1016/j.stem.2008.01.012, PMID 18371430.
  12. Lin W, Metzakopian E, Mavromatakis YE, et al.: Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. In: Dev. Biol. 333. Jahrgang, Nr. 2, September 2009, S. 386–96, doi:10.1016/j.ydbio.2009.07.006, PMID 19607821.
  13. Nature 435, 944-947 (16 June 2005) | doi:10.1038/nature03649; The initiation of liver development is dependent on Foxa transcription factors; Catherine S. Lee, Joshua R. Friedman, James T. Fulmer, & Klaus H. Kaestner
  14. Zhaoyu Li, Peter White, Geetu Tuteja, Nir Rubins, Sara Sackett, and Klaus H. Kaestner; Foxa1 and Foxa2 regulate bile duct development in mice; The Journal of Clinical Investigation http://www.jci.org Volume 119 Number 6 June 2009 1537
  15. Howell JJ, Stoffel M: Nuclear export-independent inhibition of Foxa2 by insulin. In: J. Biol. Chem. 284. Jahrgang, Nr. 37, September 2009, S. 24816–24, doi:10.1074/jbc.M109.042135, PMID 19589781.
  16. Gao N, White P, Doliba N, Golson ML, Matschinsky FM, Kaestner KH: Foxa2 controls vesicle docking and insulin secretion in mature Beta cells. In: Cell Metab. 6. Jahrgang, Nr. 4, Oktober 2007, S. 267–79, doi:10.1016/j.cmet.2007.08.015, PMID 17908556 (cell.com).
  17. Raum JC, Gerrish K, Artner I, et al.: FoxA2, Nkx2.2, and PDX-1 regulate islet beta-cell-specific mafA expression through conserved sequences located between base pairs -8118 and -7750 upstream from the transcription start site. In: Mol. Cell. Biol. 26. Jahrgang, Nr. 15, August 2006, S. 5735–43, doi:10.1128/MCB.00249-06, PMID 16847327, PMC 1592775 (freier Volltext) – (pubget.com [PDF]).
  18. Cheng A, Zhang M, Crosson SM, Bao ZQ, Saltiel AR: Regulation of the mouse protein targeting to glycogen (PTG) promoter by the FoxA2 forkhead protein and by 3',5'-cyclic adenosine 5'-monophosphate in H4IIE hepatoma cells. In: Endocrinology. 147. Jahrgang, Nr. 7, Juli 2006, S. 3606–12, doi:10.1210/en.2005-1513, PMID 16627590 (endojournals.org).
  19. Bochkis IM, Rubins NE, White P, Furth EE, Friedman JR, Kaestner KH: Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. In: Nat. Med. 14. Jahrgang, Nr. 8, August 2008, S. 828–36, doi:10.1038/nm.1853, PMID 18660816.
  20. Bochkis IM, Schug J, Rubins NE, Chopra AR, O'Malley BW, Kaestner KH: Foxa2-dependent hepatic gene regulatory networks depend on physiological state. In: Physiol. Genomics. 38. Jahrgang, Nr. 2, Juli 2009, S. 186–95, doi:10.1152/physiolgenomics.90376.2008, PMID 19417011.
  21. Hashita T, Sakuma T, Akada M, et al.: Forkhead box A2-mediated regulation of female-predominant expression of the mouse Cyp2b9 gene. In: Drug Metab. Dispos. 36. Jahrgang, Nr. 6, Juni 2008, S. 1080–7, doi:10.1124/dmd.107.019729, PMID 18339816 (aspetjournals.org).
  22. Wolfrum C, Stoffel M: Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. In: Cell Metab. 3. Jahrgang, Nr. 2, Februar 2006, S. 99–110, doi:10.1016/j.cmet.2006.01.001, PMID 16459311 (cell.com).
  23. Mirosevich J, Gao N, Gupta A, Shappell SB, Jove R, Matusik RJ: Expression and role of Foxa proteins in prostate cancer. In: Prostate. 66. Jahrgang, Nr. 10, Juli 2006, S. 1013–28, doi:10.1002/pros.20299, PMID 16001449.
  24. Lehner F, Kulik U, Klempnauer J, Borlak J: The hepatocyte nuclear factor 6 (HNF6) and FOXA2 are key regulators in colorectal liver metastases. In: FASEB J. 21. Jahrgang, Nr. 7, Mai 2007, S. 1445–62, doi:10.1096/fj.06-6575com, PMID 17283222 (fasebj.org).
  25. Berg DT, Gerlitz B, Sharma GR, et al.: FoxA2 involvement in suppression of protein C, an outcome predictor in experimental sepsis. In: Clin. Vaccine Immunol. 13. Jahrgang, Nr. 3, März 2006, S. 426–32, doi:10.1128/CVI.13.3.426-432.2006, PMID 16522789, PMC 1391958 (freier Volltext).