Atomkern

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 17. November 2020 um 23:58 Uhr durch Bleckneuhaus (Diskussion | Beiträge) (→‎Kernreaktionen: Textpflege). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Schematische Darstellung des Atoms (nicht maßstäblich, sonst wäre der untere Pfeil ca. 100 m lang).

Der Atomkern ist der positiv geladene innere Teil eines Atoms. Die Unterteilung eines Atoms in Atomkern und Atomhülle geht auf Ernest Rutherford zurück, der 1911 in Streuexperimenten zeigte, dass Atome aus einem winzigen, kompakten Kern in einer leichten Hülle bestehen müssen. Dabei hat der Atomkern zwar einen 20.000 bis 150.000 Mal kleineren Durchmesser als die Atomhülle, beherbergt aber mehr als 99,9 Prozent der Masse des gesamten Atoms. Der Atomkern besteht aus Protonen und (außer bei 1H) Neutronen. Der Atomkern bestimmt durch seine Protonenzahl (auch Kernladungszahl, Ordnungszahl) die Anzahl der Elektronen eines elektrisch neutralen Atoms, dadurch auch die Struktur der Elektronenhülle und somit die chemischen Eigenschaften des Atoms. Protonen und Neutronen werden im Kern durch Kernkräfte zusammengehalten. Ändert sich der Aufbau oder Zustand eines Kerns, wie z. B. durch Radioaktivität, kann die umgesetzte Energie millionenfach größer sein als bei einer chemischen Reaktion der Hülle.

Das Teilgebiet der Physik, das sich mit Atomkernen beschäftigt, heißt Kernphysik. In Begriffen, die den Atomkern betreffen, wurde in der Anfangszeit meist der Vorsatz „Atom-“ verwendet. Später wurde das weitgehend abgelöst durch Kern- oder Nuklear-, nach dem lateinischen Wort nucleus für Kern. Nuklear bezeichnet Dinge oder Wirkungen, die mit Eigenschaften oder mit Reaktionen von Atomkernen zusammenhängen, beispielsweise Nuklearmedizin.

Die einzelnen Atomsorten werden nach dem Aufbau ihrer Atomkerne als Nuklide bezeichnet.

Kenntnisse über die Eigenschaften von Atomkernen sind notwendig u. a. zum Verstehen der Radioaktivität, der Kernspaltung (Kernkraftwerk, Kernreaktor, Kernwaffe) und der Kernfusion (Kernfusionsreaktor, Wasserstoffbombe, Leuchten der Sterne), aber auch der Magnetresonanztomographie (MRT) in der Medizin sowie der Hyperfeinstruktur in der Spektroskopie.

Aufbau des Atomkerns

Größe, Dichte, Bestandteile, Bezeichnungen

Der Atomkern befindet sich, anschaulich gesprochen, im Zentrum des Atoms; sein Durchmesser beträgt etwa 120.000 bis 1150.000 des Durchmessers der Elektronenhülle. Ein Atomkern hat z. B. bei Helium rund 1 fm (Femtometer) Durchmesser, beim Uran etwa 16 fm. Der Atomkern stellt aber, je nach Element, 99,95 bis 99,98 Prozent der Masse des gesamten Atoms.

Die Dichte des Kerns (das Verhältnis von Kernmasse zu Kernvolumen) ist für alle Kerne annähernd gleich und beträgt rund 2·1017 kg/m³.[1] Materie in dieser Dichte heißt Kernmaterie. Um diese Dichte zu erreichen, müsste man beispielsweise den Eiffelturm auf die Größe eines Sandkorns zusammendrücken.

Der Kern ist aufgebaut aus Protonen und Neutronen, die etwa gleiche Masse haben und zusammen auch Nukleonen genannt werden. Die Zahl der Protonen wird Kernladungszahl genannt und in aller Regel mit bezeichnet. Die Gesamtzahl der Nukleonen wird Massenzahl genannt, die Zahl der Neutronen wird mit bezeichnet, so dass (für Genaueres zur Masse des Kerns siehe Kernmasse oder Massendefekt). Die Massenzahlen der auf der Erde natürlich vorkommenden Atome reichen von (normaler Wasserstoff 1H) bis 244 (Plutonium 244Pu). Die makroskopische Dichte der kondensierten Materie dagegen steigt nicht proportional zur Atommasse, weil auch der Atomradius im Mittel ums 3–4-fache ansteigt (neben starken periodischen Schwankungen, siehe Abb. in Atomradius).

Protonen sind elektrisch positiv geladen, Neutronen neutral. Daher ist der Atomkern positiv geladen und kann durch die Coulombkraft negativ geladene Elektronen an sich binden. Da die Ladungen von Elektron und Proton entgegengesetzt gleich ist, hat ein nach außen hin elektrisch neutrales Atom ebenso viele Elektronen in der Atomhülle wie Protonen im Kern. Da die Atomhülle weitestgehend die chemischen Eigenschaften bestimmt, legt die Kernladungszahl damit auch fest, zu welchem Element das Atom gehört, sie ist die chemische Ordnungszahl.

Die Zahl der Neutronen hat nur geringen Einfluss auf die chemischen Eigenschaften des Atoms, ist aber entscheidend für die Stabilität oder Instabilität (Radioaktivität) des Kerns. Abgesehen vom radioaktiven Zerfall – der spontan eintritt – kann sich die Zahl der Protonen oder Neutronen im Kern nur durch eine Kernreaktion ändern, also infolge eines Zusammenstoßes mit anderen Teilchen.

Eine durch Ordnungszahl und Massenzahl festgelegte Atom- oder Atomkernsorte wird Nuklid genannt. Bei einem gg-Kern sind und geradzahlig, bei einem uu-Kernsind beide ungerade, und bei einem ug- oder gu-Kern ist entweder oder gerade. Als Isomere werden Atomkernsorten in langlebigen Anregungsstufen des Kerns (siehe unten) bezeichnet; sie zählen als eigene Nuklide.[2] Unterscheidet man Kerne (oder ganze Atome) desselben Elements, also mit gleicher Protonenzahl, nach ihrer Anzahl von Neutronen, spricht man von den Isotopen des betreffenden Elements. Bezeichnet werden Nuklide mit dem chemischen Elementsymbol und der Massenzahl, wie z. B. das häufigste Kohlenstoffisotop 12C oder das häufigste Eisenisotop 56Fe (bei Isomeren noch mit einem Zusatz wie „m“ für „metastabil“). Weniger üblich ist die Schreibweise C-12 bzw. Fe-56, oder die redundante zusätzliche Angabe der Ordnungszahl: .

Nuklidkarte

Es sind (Stand von 2003) insgesamt etwa 3200 langlebige Nuklide bekannt,[3] die sich auf etwa 2700 Isotope[4] und 118 bekannte Elemente von Wasserstoff bis zum Oganesson verteilen. Darunter gibt es ca. 250 stabile Isotope. Die Stabilität eines Nuklids hängt von der Zahl der Protonen und der Neutronen ab. Liegt das Verhältnis beider Zahlen außerhalb eines bestimmten Bereichs, ist der Kern instabil, d. h. radioaktiv, und wandelt sich in einen stabileren Kern um. Zu den Protonenzahlen 43, 61, oder größer als 82, gibt es gar kein stabiles Nuklid.

Die Nuklide werden zur Übersicht in einer Nuklidkarte oder „Isotopenkarte“ durch kleine Quadrate grafisch dargestellt. Die Abbildung zeigt 1500 Nuklide (Stand 2010). Die Abszisse gibt die Neutronenzahl an, die Ordinate die Protonenzahl. Stabile Nuklide haben schwarze Quadrate, links unten beginnend mit 1H, rechts oben endend mit 208Pb. Die Schmalheit des schwarzen Bandes zeigt, wie genau die Abstimmung von Protonen- und Neutronenzahl für einen stabilen Kern sein muss. Bis A=40 müssen beide Zahlen nahezu gleich sein, darüber müssen die Neutronen zunehmend im Überschuss vorhanden sein (bis ca. 1,6:1). Die übrigen Kerne sind sämtlich instabilen, wobei die Farbe des Quadrats die radioaktiven Umwandlungsarten anzeigt.

Kernkraft, Coulombkraft

Alle Nukleonen ziehen sich gegenseitig durch die Kernkräfte an. Diese sind eine Restwechselwirkung der Starken Wechselwirkung und haben daher nur kurze Reichweite. Ab einer größeren Entfernung als etwa ein Nukleondurchmesser (etwa 1 fm = 10−15 m) überwiegt zwischen je zwei Protonen die Abstoßung durch die langreichweitige Coulombkraft. Die lange Reichweite der Coulombkraft gegenüber der kurzen Reichweite der Kernkraft begrenzt die Größe der Atomkerne und damit auch Anzahl chemischer Elemente, die stabile Isotope haben können. Denn auch in einem großen Kern spürt ein Proton nur die Anziehung seiner nächsten Nachbar-Nukleonen, die Coulomb-Abstoßung hingegen von allen anderen Protonen des Kerns. Oberhalb der Protonenzahl 82 (Blei) ist die Abstoßung so stark, dass alle weiteren Kerne instabil sind, d. h. radioaktiv.

Unter diesen gibt es Nuklide mit Halbwertzeiten bis zu 14 Mrd. Jahren (Thorium ), weshalb sie auf der Erde auch in natürlichen Vorkommen noch zu finden sind. Als Nuklid mit der höchsten natürlich vorkommenden Protonenzahl wurde in Spuren gefunden. Gewöhnlich werden nur Nuklide bis (Uran) als natürlich vorkommend gezählt. Kerne mit noch mehr Protonen (Transurane) „leben“ nicht lange genug, um als primordiale Nuklide vorzukommen; sie können nur nach künstlicher Herstellung in Kernreaktionen beobachtet werden.

Bindungsenergie

Mittlere Bindungsenergie pro Nukleon in Abhängigkeit von der Anzahl der Nukleonen im Atomkern.[5] Stabile Nuklide schwarz, instabile rot

Die Bindungsenergie entspricht der Energie, die zugeführt werden müsste, um den Kern in seine einzelnen Nukleonen zu zerlegen. Umgekehrt würde diese Bindungsenergie freigesetzt, wenn es gelänge, einen Atomkern aus freien Protonen und Neutronen zusammenzusetzen. Wegen der Äquivalenz von Masse und Energie führt die Bildung des Kerns zu einem Massendefekt. Das heißt, jeder Atomkern (außer 1H) hat eine geringere Masse, als sich beim Addieren der ihn bildenden – ungebundenen – Nukleonen ergibt. Der Massendefekt liegt zwischen 0,1 % (Deuteron) und 0,9 % (Ni-62). Aus einer genauen Bestimmung der Masse eines Atoms mit A Nukleonen, darunter Z Protonen, lässt sich daher die Bindungsenergie des Kerns ableiten:

Dabei ist

die Masse eines freien Protons,
die Masse eines Elektrons,
die Masse eines freien Neutrons,
die Lichtgeschwindigkeit.

Die Bindungsenergie kurzlebiger Kerne lässt sich beispielsweise durch Messung der Energien ihrer Zerfallsprodukte bestimmen. Gemessene Werte für die mittlere Bindungsenergie pro Nukleon sind in nebenstehender Abbildung dargestellt.

Die Bindungsenergie der Kerne nimmt in etwa proportional zur Nukleonenzahl A zu. Entsprechend bleibt die mittlere Bindungsenergie pro Nukleon (siehe Abbildung) in einem weiten Bereich in etwa bei ungefähr 8 MeV. Die Bindungsenergie pro Nukleon ist in der über der Massenzahl A dargestellt. Beginnend mit 1,1 MeV pro Nukleon bei A=2 steigt sie bis A≈16 auf Werte um 8 MeV. Ihr Maximum erreicht sie bei Ni-62 mit 8,8 MeV pro Nukleon. Anschließend nimmt sie allmählich bis auf etwa 7 MeV ab, verursacht durch die zunehmende elektrostatischen Abstoßung aller Protonen untereinander.

Aufgrund der unterschiedlichen Bindungsenergie pro Nukleon bei verschiedenen Kernen können Kernreaktionen, bei denen sich hinterher die Nukleonen anders gruppieren als vorher, ein erheblicher Energiegewinn ergeben. Eine Erhöhung der Bindungsenergie pro Nukleon tritt bei der Fusion zweier leichterer Kerne, aber auch bei der Spaltung eines schweren Kerns ein. Bei der Fusion von He-4 aus kleineren Kernen ist die Freisetzung besonders hoch, was für die technische Kernfusion ausgenutzt werden kann. Die Spaltung schwerer Atomkerne (ab U-235) wird in Kernkraftwerken seit den 1950er Jahren zur Energiegewinnung ausgenutzt. Beide Arten der Energiefreisetzung werden auch in Kernwaffen realisiert.

Die Bindungsenergie von Atomkernen kann im Rahmen des Tröpfchenmodells mit der Bethe-Weizsäcker-Formel mit etwa 1%iger Genauigkeit abgeschätzt werden.

Von der mittleren Bindungsenergie pro Nukleon zu unterscheiden ist die Ablösearbeit, das ist die Energie, die zur Ablösung eines einzigen Nukleons nötig ist. Sie variiert bei stabilen Kernen zwischen 1,1 MeV (Deuteron H-2) und 16,9 MeV (Ne-20). Maxima liegen bei den „magischen Zahlen“ und sind, wie die Ionisierungsenergie bei den Atomen, ein Charakteristikum von Schalenabschlüssen.

Energieniveaus

Atomkerne haben wie die Elektronenhülle diskrete Energieniveaus, typische Abstände zwischen ihnen betragen aber nicht einige eV wie bei Atomen, sondern 100 keV bis einige MeV. Die Folge dieser Niveaus setzt sich, wie bei Atomen auch, im Kontinuum fort, also oberhalb der Energie, die die Ablösung eines Teilchens ermöglicht (sie werden dann als Resonanz bezeichnet). Ein ungestörter Kern befindet sich normalerweise in seinem tiefsten Energieniveau, dem Grundzustand. Die höheren Niveaus (angeregte Zustände) sind nicht stabil, vielmehr geht der Kern früher oder später spontan in einen stabileren Zustand über, wobei die Energiedifferenz in den allermeisten Fällen als Photon (Gammastrahlung) oder an ein Elektron der K-Schale abgegeben wird (Innere Konversion). Die seltenen anderen Möglichkeiten sind die Emission eines Hüllenelektrons aus einer anderen Schale und die Paarerzeugung von Elektron und Positron. Jedes Niveau hat einen bestimmten Drehimpuls (Kernspin) und wohldefinierte Parität (bis auf eine winzige Beimischung aufgrund der Paritätsverletzung durch die Schwache Wechselwirkung). Der Zerfall der angeregten Zustände folgt dem exponentiellen Zerfallsgesetz mit meist sehr kurzen Halbwertzeiten (10−14s sind nicht selten); besonders langlebige (metastabile) angeregte Zustände (Halbwertszeiten von Nanoekunden bis Millionen Jahre) werden als Isomere bezeichnet. Oft verdanken sie ihre lange Lebensdauer einem Kernspin, der einige größer ist als bei allen durch einen spontanen Übergang erreichbaren Zuständen.

Bei der Folge der Energieniveaus lassen sich einige Grundtypen der Anregungsformen unterscheiden:

Kollektive Rotation

Ein von der Kugelform abweichender Kern kann als ganzes zu Rotation angeregt werden. In einfachen Fällen (gg-Kerne) haben die Niveaus den geradzahligen Kernspin und, wie mit den Formeln der klassischen Mechanik, die Anregungsenergie , wobei das Trägheitsmoment ist. Die Abstände zwischen aufeinanderfolgenden Niveaus wachsen regelmäßig an und bilden eine Rotationsbande, wie sie auch aus den optischen Spektren 2-atomiger Moleküle bekannt ist. Dieses Bild kommt bei vielen Kernen vor, vor allem bei großen Kernen weitab von abgeschlossenen Schalen, wenn sie eine stabile ellipsoide Deformation aufweisen.

Kollektive Schwingung

In Kernen können die Protonen kollektiv gegenüber den Neutronen schwingen. Die Schwingungsfrequenz liegt oberhalb von etwa Hz, die Energie also im Bereich MeV. Die Anregung heißt Riesenresonanz, weil sie sich in allen nicht zu kleinen Kernen durch einen erhöhten Wirkungsquerschnitt der Wechselwirkung mit Gammaquanten der entsprechenden Energien bzw. Frequenzen zeigt.

Daneben sind für kugelförmige Kerne, wenn sie auf der Isotopenkarte nahe bei den Gebieten mit deformierten Kernen liegen, Formschwingungen der Oberfläche bei konstantem Volumen möglich (analog den Formschwingungen von großen Seifenblasen). Das Energiespektrum ist eine Vibrationsbande. Es zeigt (näherungsweise) äquidistante Anregungsenergien, deren Grundschwingung im Bereich von 1MeV Anregungsenergie liegt. Die höheren Niveaus sind leicht aufgespalten und lassen sich theoretisch als Anregung mit mehreren gleichen Schwingungsquanten deuten. An der Anzahl der aufgespaltenen Niveaus und den dabei vorkommenden Kernspins zeigt sich, dass die Anregungsquanten sich wie identische Bosonen verhalten. Bei Schwingungen mit elliptischer Deformation haben sie den Spin , bei birnenförmiger Schwingung .

Außerdem gibt es bei kugelförmigen Kernen Kompressionsschwingungen. Diese sind kugelförmig, haben den Kernspin und eine Energie über 100 MeV. Daraus kann man den Kompressionsmodul von Kernmaterie bestimmen.

Einzelteilchenanregung

Bei Kernen nahe an abgeschlossenen Schalen für Protonen und/oder Neutronen zeigen sich Anregungsspektren, die nach Energie und Kernspin durch die Eigenschaften einzelner Orbitale bestimmt sind. Diese Spektren haben bei verschiedenen Kernen je nachdem, welches Orbital beteiligt ist, sehr unterschiedliche Folgen von Energie und Kernspin. Da die Drehimpulse benachbarter Orbitale sich in manchen Fällen stark unterscheiden, ergeben sich hier die Bedingungen für metastabile Zustände (auf der Nuklidkarte "Isomerieinseln").

Radioaktivität

Der Begriff Radioaktivität bezeichnet die Eigenschaft instabiler Nuklide, sich spontan unter Energieabgabe umzuwandeln. Von den meisten Elementen existieren nur wenige stabile Isotope oder sogar nur eins; bei den Ordnungszahlen 43 (Technetium), 61 (Promethium) und allen oberhalb 82 (Blei) gibt es keine stabilen Isotope. Im Allgemeinen wird bei der Umwandlung ionisierende Strahlung ausgesandt.

Bei den instabilen Atomkernen werden im Wesentlichen drei Zerfallsarten unterschieden:

Alphazerfall tritt nur bei hohen Massenzahlen auf, wenn die mittlere Bindungsenergie pro Nukleon sich durch die Abgabe von zwei Protonen und zwei Neutronen genügend erhöht. Das ist theoretisch ab etwa A=140 gegeben. Bei großem A, etwa ab 230, tritt auch spontane Kernspaltung auf.

Beim Betazerfall wird aus dem Kern eines Radionuklids ein Elektron oder Positron abgegeben. Dieses entsteht, indem sich im Kern eines der Neutronen in ein Proton, ein Elektron-Antineutrino und ein Elektron (Beta-Minus-Zerfall) bzw. eines der Protonen in ein Neutron, ein Elektron-Neutrino und ein Positron (Beta-Plus-Zerfall) umwandelt. Die Summe der elektrischen Ladungen und die Anzahl der Nukleonen bleibt dabei erhalten, aber die Mischung aus Protonen und Neutronen wird energetisch günstiger. Die chemische Ordnungszahl ändert sich um ±1. Betazerfall tritt bei allen Massenzahlen auf.

Die Abgabe von Gammastrahlung setzt voraus, dass der Kern in einem angeregten Zustand ist (vgl. Abschnitt Energieniveaus) und tritt daher hauptsächlich unmittelbar nach einem Alpha- oder Betazerfall auf, sofern dieser nicht direkt zum Grundzustand des Tochterkerns führt. Deshalb wird auch die Gamma-Emission analog den anderen Prozessen der Radioaktivität manchmal als Gamma„zerfall“ bezeichnet.

Kernmodelle

In der Kernphysik existiert kein einheitliches Modell zur umfassenden Beschreibung aller Vorgänge im Atomkern. Im Vergleich zu der Atomphysik mit dem erfolgreichen quantenmechanischen Atommodell fehlt im Kern ein besonderes, massives Kraftzentrum, und die Kräfte zwischen den Nukleonen sind um vieles komplizierter als die rein elektromagnetische Wechselwirkung im Atom. Daher werden verschiedene Kernmodelle für unterschiedliche Fragestellungen benutzt. Die wichtigsten sind:

  • Das Tröpfchenmodell (Carl Friedrich von Weizsäcker 1935, Niels Bohr 1936) beschreibt den Atomkern als kugelrundes Tröpfchen einer elektrisch geladenen Flüssigkeit und ergibt eine Formel für seine gesamte Bindungsenergie. Mit diesem fast klassischen Modell kann gut erklärt werden, welche Isotope stabil sind und welche sich noch durch Energieabgabe in ein fester gebundenes umwandeln können, etwa durch α-Zerfall, β-Zerfall, Kernspaltung. Damit findet u. a. auch die Anzahl der stabilen chemischen Elemente auf der Erde eine Begründung.
  • Das Schalenmodell für Kerne (Maria Goeppert-Mayer, J. Hans D. Jensen, 1949) führt den Aufbau der Atomkerne in Analogie zum Schalenmodell der Atomphysik rein auf quantenmechanische Gesetzmäßigkeiten (Orbitale in einem Potentialtopf, Pauli-Prinzip) zurück. Die Wechselwirkung zwischen je zwei Nukleonen wird erst in einer weiteren Verfeinerung berücksichtigt. Das Schalenmodell kann bei der Bindungsenergie der Kerne die Abweichungen vom Tröpfchenmodell erklären, insbesondere die hohe Stabilität bei bestimmten, sogenannten magischen Protonen- und Neutronenanzahlen. Es liefert auch detaillierte Erklärungen für Energieniveaus, Kernspins, magnetische Momente, Mechanismen von Kernreaktionen, soweit sie von der Bewegung eines einzigen oder nur sehr weniger Nukleonen des Kerns herrühren. Häufig werden aber angeregte Zustände eines Atomkerns unter Beteiligung vieler oder sogar aller Nukleonen gebildet.
  • Das Kollektivmodell (Aage Niels Bohr, Ben Mottelson, 1953) dient bei deformierten Kernen der Beschreibung kollektiver Anregungen (Vibrationen und Rotationen). Diese Kerne haben keine exakte Kugelgestalt, sondern sind in einer Richtung leicht abgeplattet oder etwas gestreckt, was sich zum Beispiel an den elektrischen Quadrupolmomenten dieser Kerne zeigt. Folge ist ein charakteristisches Niveauschema der angeregten Zustände in Form der Vibrationsbande bzw. Rotationsbande.
  • Im vereinheitlichten Modell (unified model, James Rainwater 1957) werden Schalenmodell und Kollektivmodell verbunden.

Weitere teils sehr vereinfachte Modelle bzw. für Spezialzwecke betrachtete Modelle sind zum Beispiel:

  • Fermigas-Modell (auch uniformes Modell). Hier werden die Nukleonen trotz ihrer starken Wechselwirkungen als frei beweglich angenommen und unterliegen nur dem Pauli-Prinzip. Diese Vorstellung wird im Tröpfchenmodell zur Bindungsenergie benutzt, um die Asymmetrie-Energie, die den Einfluss des Verhältnisses von Neutronen- zu Protonenzahl beschreibt, zu begründen.
  • Alphateilchen-Modell. Alphateilchen sind hier stabile Untereinheiten innerhalb des Kerns, was z. B. für die Kerne C-12, O-16, Ne-20 eine nützliche Modellvorstellung abgibt.
  • Potentialtopf-Modell. Hier wird in Analogie zum Atom ein bestimmtes Potential vorgegeben und daraus das Spektrum der Energieeigenzustände eines einzelnen Nukleons ermittelt. Es ist die Grundlage des Schalenmodells und des räumlich beschränkten Fermigas-Modells. Als Formen des Potentials kommen vor allem das einfache Kastenpotential, das Oszillatorpotential sowie das erheblich realistischere Woods-Saxon-Potential vor.
  • Optisches Modell. Hier werden Kernreaktionen dadurch modelliert, dass das einfliegende Projektil durch den Targetkern so beeinflusst wird wie eine Lichtwelle durch eine absorbierende („trübe“) Linse. Das Modell eignet sich gut für die elastische Streuung sowie für Reaktionen, in denen dem Targetkern lediglich ein Teilchen entrissen oder ihm hinzugefügt wird.
  • Interacting Boson Model. Hier werden die Nukleonen außerhalb einer abgeschlossenen Schale zunächst zu Paaren von Protonen bzw. Neutronen zusammengefasst, und im nächsten Schritt deren Wechselwirkung untereinander modelliert.

An den Modellen des Atomkerns zeigen sich zwei stark vereinfachende, aber entgegengesetzte Ausgangspunkte:

  • Modell starker Korrelation: Der Atomkern wird als Ansammlung von eng gepaarten Nukleonen oder Nukleonengruppen verstanden (z. B. Tröpfchenmodell, Alphateilchen-Modell, Berücksichtigung von Pairing in Kernen ähnlich wie bei der Supraleitung);
  • Modelle unabhängiger Teilchen: Die Nukleonen bewegen sich relativ frei im Kern (Fermigas-Modell, optisches Modell, Schalenmodell, Potentialtopf-Modell).

Realistische Modelle zeichnen sich durch eine geeignete Kombination beider Ansätze aus.

Jedes der genannten Modelle ist nur für einen bestimmten Bereich der nuklearen Phänomene anwendbar, eine widerspruchsfreie und umfassende Theorie konnte noch nicht formuliert werden.

Forschungsgeschichte

Die Darstellung orientiert sich vor allem an[6][7].

Radioaktivität

Die natürliche Radioaktivität wurde 1895 entdeckt, aber erst gegen 1915 richtig als kernphysikalische Erscheinung eingeordnet. Seit 1900 wurden Alpha- Beta- und Gammaradioaktivität unterschieden, wenn auch anfangs nur durch ihre verschiedene Durchdringungsfähigkeit. Wichtige Entdeckungen waren, dass das chemische Element sich ändert, bei Alpharadioaktivität um , bei Betaradioaktivität um , aber nicht bei Gammaradioaktivität (), und dass es sich bei Alphateilchen um doppelt ionisierte Heliumatome handelt (1909), bei den Betastrahlen um Elektronen, und dass Gammastrahlen keine Ladung transportieren. Um 1900 entdeckte Rutherford das Exponentialgesetz des radioaktiven Zerfalls und prägte den Begriff der Halbwertzeit. Er schloss richtig, dass es sich bei den Umwandlungen um rein zufällige Prozesse handeln muss, die sich auch nicht durch chemische oder physikalische Beeinflussung beschleunigen oder verzögern lassen. Der rein statistische Charakter der ganzen Erscheinung wurde durch Egon von Schweidler 1905 anhand der erwarteten statischen Fluktuationen nachgewiesen und konnte auch durch Szintillation (William Crookes 1903) und Teilchenspuren in der Nebelkammer (Charles Wilson 1911) sichtbar gemacht werden. Solche Beobachtungen haben nicht unwesentlich dazu beigetragen, die Existenz von Atomen in der Wissenschaft zu verankern.

Unerklärbar war die hohe Energie der einzelnen Alpha- oder Betateilchen, um Größenordnungen höher als die Energieumsätze (pro Atom) bei chemischen Reaktionen. Gammastrahlen wurde 1914 von Rutherford durch Beugung an Kristallen als extrem kurzwellige elektromagnetische Wellen identifiziert.

Die lange Lebensdauer der Alphastrahler wurde 1928 von George Gamov auf den quantenmechanischen Tunneleffekt zurückgeführt, der vor allem auch ihre Abhängigkeit von der Energie der Alphateilchen erklären konnte. Zur Erklärung der Betaradioaktivität postulierte Enrico Fermi 1934 eine eigene schwache Wechselwirkung, in der die emittierten Elektronen zusammen mit den (damals hypothetischen) Neutrinos nach der Einsteinformel erst entstehen. Die Entstehung der Gammastrahlung wurde wie die Lichtemission von Atomen durch die 1928 von Paul Dirac vorgeschlagene und 1932 von Fermi weiter ausgearbeitete Quantenelektrodynamik beschrieben. Die z. T. extrem langen Lebensdauern, die bei "isomeren Kernen" auch hier auftraten, wurden 1935 durch Carl Friedrich von Weizsäcker darauf zurückgeführt, dass anders als in der Atomhülle die betreffenden Gammaquanten mit einem hohem Drehimpuls erzeugt werden müssen.

Entdeckung des Atomkerns

Das Schlüsselexperiment, das zur überraschenden Entdeckung des Atomkerns führte, gelang dem Doktoranden Ernest Marsden im Labor des Nobelpreisträgers Ernest Rutherford am 20. Dezember 1910. Bei Kontrollversuchen zur Herstellung eines scharf begrenzten Strahls von α-Teilchen hatte er bemerkt, dass die Teilchen durch dünne Metallfolien zwar zu 99,99 % fast ohne Ablenkung hindurchgehen, in vereinzelten Fällen aber auch um mehr als 90° abgelenkt werden. Die starke Ablenkung stand im Widerspruch zu dem erwarteten Ergebnis: Nach dem damals angenommenen Thomsonschen Atommodell („Rosinenkuchen-Modell“, englisch plum pudding model) hätte das Atom aus Elektronen bestanden, die in einer diffusen positiv geladenen Wolke schwebten. Bekannt war, dass α-Teilchen ionisierte Atome des Edelgases Helium sind und weder von den positiv geladenen Wolken noch von zahlreichen Zusammenstößen mit den Elektronen so weit von ihrer Bahn abweichen könnten. Zweck der Versuche war es eigentlich, die Eigenschaften dieser Wolke näher zu untersuchen. Rutherford interpretierte das unerwartete Ergebnis so, dass die Atome der Folie größtenteils aus leerem Raum bestanden, der die Alphateilchen ungehindert passieren ließ, während kleine, elektrisch geladene und sehr massive Partikel darin existierten, die die Alphateilchen bei einem der seltenen besonders engen Zusammenstöße sehr stark aus ihrer Bahn werfen konnten. Kurze Überschlagsrechnungen zeigten Rutherford, dass diese „Kerne“ mindestens 1000 Mal kleiner als das Atom sein mussten, aber praktisch seine ganze Masse enthalten.

Diese Vorstellung wurde unterstützt durch Henry Moseley, der 1915 bei 40 Elementen nachwies, dass die Photonen der Charakteristische Röntgenstrahlung mit den höchsten Energien genau der Formel genügten, die 1913 von Niels Bohr für die innersten Bahnen des Elektrons im Coulombfeld einer Punktladung aufgestellt worden waren, wenn die richtige Ordnungszahl für die Kernladung eingesetzt wurde. Diese Bahnen sind um ein entsprechendes Vielfaches kleiner als der Atomdurchmesser.

Die endliche Größe des Atomkerns war, ebenfalls von Rutherford, 1919 dadurch nachgewiesen worden, dass die Ablenkung von Alphateilchen, die dem Mittelpunkt des Coulombpotentials näher als einige fm gekommen waren, nicht mehr der für Punktladungen berechneten Häufigkeitsverteilung folgte. Dies Phänomen heißt „Anomale Rutherfordstreuung“ und diente noch bis in die 1950er Jahre zur genaueren Bestimmung der Kernradien.

Bestandteile und Größe des Atomkerns

1919 fand Rutherford auf einer Aufnahme mit der Nebelkammer den Beweis, dass ein energiereiches Alphateilchen aus einen Stickstoffkern einen Wasserstoffkern herausgeschlagen hatte. Er sah im Wasserstoffkern einen universellen Baustein aller Kerne und gab ihm den Namen „Proton“. Da durch die Massenspektrometrie um diese Zeit schon festgestellt worden war, dass die Atome aller Elemente nahezu ganzzahlige Atomgewichte A hatten, nahm Rutherford an, die Kerne mit Massenzahl A und Ordnungszahl Z seien aus einer Anzahl A Protonen und (A-Z) Elektronen zusammengesetzt. Dieses Proton-Elektron-Modell wurde lange Zeit als gültig angenommen, bis 1932 von James Chadwick das Neutron entdeckt wurde.

Kernspin, magnetisches Dipolmoment, elektrisches Quadrupolmoment

Die Hyperfeinstruktur, eine Aufspaltung der Spektrallinien von der Größenordnung 1:10−5 (im optischen Bereich) wurde 1924 entdeckt und durch die Existenz eines Kernspins gedeutet, der ein magnetisches Moment des Kerns bedingt. Je nach Einstellwinkel zum Drehimpuls bzw. magnetischem Moment der Atomhülle ergeben sich diese extrem geringe Zusatzenergien. Aus der Zahl der durch die Aufspaltung entstandenen Linien und ihrer Verschiebung in einem zusätzlich angelegten Magnetfeld (Zeeman-Effekt) konnte 1927 zum ersten Mal der Spin eines schweren Kerns bestimmt werden ().

Der Spin 1/2 des Protons wurde 1927 anhand eines scheinbar sehr fernliegenden Phänomens nachgewiesen, einer Anomalie in der Temperaturabhängigkeit der spezifischen Wärme von Wasserstoff bei Temperaturen unter 100 K. Die Erklärung beruht darauf, dass das H2-Molekül bei diesen Temperaturen in einer von zwei stabilen allotropen Formen vorliegt, bei denen sich die Spins der beiden Protonen zu 0 oder zu 1 koppeln. Der Energieunterschied beider Formen ist extrem klein (ca. 10−12 eV), die quantenmechanischen Zustände der Moleküle haben aber entgegengesetzte Symmetrie und zeigen daher verschiedene Rotationsspektren. Diese drücken sich bei tiefen Temperaturen in der spezifischen Wärme aus.

Das magnetische Moment des Protons wurde von Otto Stern u. a. nachgewiesen, indem an einem extrem eng fokussierten H2-Molekülstrahl in einem inhomogenen Magnetfeld eine geringe Aufweichung beobachten konnten. Der Versuch ist analog zur Aufspaltung eines Atomstrahls mit Atomen mit einem ungepaarten Elektron (Stern-Gerlach-Versuch von 1923). Die Ablenkung der Moleküle durch die Kraft auf die Momente der beiden Protonen war ca 700mal kleiner als die, die vom magnetischen Moment der beiden Elektronen verursacht würde, und blieb überhaupt nur deshalb sichtbar, weil die beiden Elektronen im H2-Molekül ihre magnetischen Momente exakt antiparallel ausrichten. Der ermittelte Protonen-g-Faktor von mindestens g=5 (statt wie beim Elektron g=2 oder gar wie klassisch erwartet g=1) zeigte, dass Proton und Elektron grundlegend verschiedene Elementarteilchen sind. 1937 erweiterte Isidor Rabi die Apparatur so, dass die magnetische Energieaufspaltung mittels einer Resonanzmethode nachzuweisen war. Damit steigerte er die Genauigkeit auf 4 Dezimalstellen und maß auch das magnetische Moment anderer Kerne, u. a. das des Deuterons, das (näherungsweise) die Summe der Momente von Proton und Neutron ist. Der Spin des Neutrons war bereits durch Beobachtung der optischen Hyperfeinstruktur an geeigneten Kernen zu 1/2 ermittelt worden.

Ab 1935 wurde in der Hyperfeinstruktur von Kernen mit Kernspin ≥1 entdeckt, dass die Niveauabstände nicht genau der linearen Abhängigkeit folgten, die bei Wechselwirkung von Dipolen gilt, sondern einen quadratischen Beitrag hatten. Die mögliche Erklärung war das elektrische Quadrupolmoment aufgrund einer permanenten Abweichung von der Kugelgestalt. Dies wurde erst im Lauf der 1940er Jahre allmählich abzeptiert.

Massendefekt, Bindungsenergie, Fusion, Spaltung

Um 1920 war durch die immer genaueren Massenbestimmungen der Kerne in Massenspektrometern erwiesen, dass alle Kerne etwas leichter sind als die Summe der Massen ihrer Bausteine (damals als Protonen und Elektronen angenommen). Einen Zusammenhang mit der Bindungsenergie vermutete erstmals Arthur Eddington, das war die erste praktische Anwendung der Einsteinschen Formel auf gemessene Daten. Eddington sah in der Fusion von Wasserstoff zu Helium auch schon die Quelle der sonst physikalisch nicht zu erklärenden Energieabstrahlung der Sonne. Allerdings fusionieren die Protonen in der Sonne größtenteils nicht direkt, sondern über den durch Kohlenstoff katalysierten Bethe-Weizsäcker-Zyklus, benannt nach seinen Entdeckern 1938 Hans Bethe und Carl Friedrich von Weizsäcker.

Anfang der 1930er Jahre war bei allen Kernen der Massendefekt mit ca. 1 % Genauigkeit bestimmt worden. Zur gleichen Zeit erreichten die Teilchenbeschleuniger Energien knapp unter 1 MeV, so dass es möglich war bei Reaktionen wie eine vollständige Bilanz der Massen und kinetischen Energien aufzustellen. Einsteins Formel wurde mit (damals) 10 % Genauigkeit bestätigt.

Demnach war Kernspaltung energetisch möglich, galt aber als ausgeschlossen, bis sie durch Otto Hahn, Fritz Strassmann und Lise Meitner 1938/39 überraschend entdeckt wurde. Mit dem Ziel, die Energiefreisetzung von über 200 MeV pro Urankern für eine Bombe nie dagewesener Zerstörungskraft auszunutzen, setzte in Deutschland, Großbritannien und den USA eine intensive staatliche Forschung ein. Die Fülle der dabei gewonnenen Daten und Erkenntnisse wurde großenteils erst in den 1950er Jahren der allgemeinen Wissenschaft zur Verfügung gestellt. 1942 wurde in den USA der erste Kernreaktor in Betrieb gesetzt. Das erste neue chemische Element, Plutonium (Z=94), das auch für eine Bombe geeignet war, wurde in Reaktoren (durch Neutroneneinfang an Urankernen) tonnenweise hergestellt. Die Fusion von Wasserstoff zu Helium (in der Form ) wurde 1952 in der erste H-Bombe realisiert. Bei weiteren Testexplosionen mit immer stärkeren Bomben wurden in den Überresten weitere, durch vielfachen Neutroneneinfang neu gebildete Transurane nachgewiesen (um 1960 etwa bis Z=103). Zu den Einzelheiten siehe Kernwaffe und Kernwaffentechnik.

Kernmodelle

Bezüglich der Zusammensetzung der Kerne wurde das Proton-Elektron-Modell von 1920 nach der Entdeckung des Neutrons durch das Proton-Neutron-Modell abgelöst. Für die einzigartige Stärke der Anziehungskräfte wurde eine eigene Starke Wechselwirkung postuliert, deren mögliches Zustandekommen zusammen mit ihrer kurzen Reichweite erstmals 1937 von Hideki Yukawa durch den ständige Erzeugung, Austausch und Absorption eines hypothetischen Teilchens gedeutet wurde. Dieses Teilchen wurde von Cecil Powell 1947 in der Höhenstrahlung entdeckt und Pion genannt.

Für die Bindungsenergie und damit den Massendefekt stellte v. Weizsäcker 1935 das Tröpfchenmodell auf, in dem das Zusammenwirken von starker Kernkraft und elektrostatischer Abstoßung rein phänomenologisch und modelliert wird. Ein darüberhinausgehendes Verständnis der Struktur der Kerne wurde erst 1949 durch das Schalenmodell von Maria Goeppert-Mayer und (unabhängig) J. Hans D. Jensen möglich, die analog zum Schalenmodell der Atomhülle die Nukleonen als gebundene Teilchen in einem gemeinsamen sphärischen Potentialtopf betrachteten. Damit setzten sie sich darüber hinweg, dass das Zustandekommen dieses gemeinsamen Potentials aus der kurzreichweitigen Kernkraft heraus nicht zu begründen war. Das Schalenmodell war äußerst erfolgreich u. a. bei der Erklärung der "magischen Zahlen", die die Kerne mit besonders fester Bindung auszeichneten, sowie der Abfolge von Kernspins und magnetischen Momenten bei einem sukzessiven Aufbau der Kerne aus Protonen und Neutronen. Allerdings konnte es mit seinem kugelsymmetrischen Potentialtopf weder die Quadrupolmomente noch die kollektiven Anregungen deuten, die sich mit der Entwicklung der Gammaspektroskopie mit Szintillationszählern in immer mehr Anregungsspektren von Kernen zwischen den Magischen Zahlen zeigten. Basierend auf Ideen von James Rainwater schlugen Aage Bohr und Ben Mottelson 1954 das Kollektivmodell mit stabiler ellipsoidischer Deformation vor. Mit dem Schalenmodell als einem Modell unabhänger Teilchenbewegungen schien das zunächst schwer zu vereinbaren. Das schließlich erfolgreiche vereinheitlichte Modell wurde in den 1960er Jahren ausgearbeitet.

Kernreaktionen

Nach dem elastischen Stoß von Heliumkernen an Goldkernen im Rutherfordexperiment von 1910 wurde eine echte Reaktion zwischen zwei Kernen erstmals 1919 in einer Nebelkammeraufnahme beobachtet, ebenfalls von Rutherford. Sie führte zu der Entdeckung, dass der Wasserstoffkern in anderen Kernen als Baustein enthalten ist, weshalb er einen eigenen Namen erhielt: Proton (Reaktion ). Um dieselbe Zeit wurden durch Anomale Rutherfordstreuung (s. o.) die ersten Kernradien bestimmt. James Chadwick zeigte 1930 durch elastische Streuung von Alphastrahlen in Heliumgas erstmals die Verdoppelung der 90°-Ablenkung, die von der Quantenmechanik allein aufgrund der Ununterscheidbarkeit der stoßenden Teilchen vom Typ Boson vorhergesagt wird. 1933 zeigte Christian Gerthsen, der theoretischen Vorhersage entsprechend, an der Streuung von Protonen in Wasserstoff den umgekehrten Effekt beim Stoß von identischen Fermionen. 1932 wurde durch Chadwick das Neutron als Baustein der Kerne nachgewiesen, indem er die Strahlung schwerer neutraler Teilchen nach dem Beschuss von Be mit Alphateilchen analysierte (Reaktion ). Die bei der Streuung von Neutronen an Kernen bei bestimmten Energien zu beobachtenden scharfen Maxima im Wirkungsquerschnitt (Resonanzen) wurden 1936 durch Niels Bohrs Modell der kurzzeitigen Bildung eines angeregten Compoundkerns erklärt, der seine Energie dann in verschiedener Form abgeben kann. Darunter ist der endgültige Einfang des Neutrons, der zu einem schwereren Isotop führt, als in der Natur vorkommt, und der sich in einem nachfolgender Betazerfall zum Kern eines schwereren Elements umwandelt (ab 1939, zuerst , später in den Überresten von H-Bombenexplosionen bis etwa Z=100). 1938 wurde durch Hahn, Straßmann und Meitner entdeckt, dass Neutroneneinfang auch Kernspaltung auslösen kann. Ab 1946 wurden neue Elementarteilchen entdeckt, die in Kernreaktionen der Höhenstrahlung und an Teilchenbeschleunigern entstanden waren (Pion, Lambdateilchen etc). Die Möglichkeit, einen Kern durch das elektrische Feld beim Vorbeiflug eines schnellen zweiten Kerns anzuregen (Coulombanregung), wurde ab 1949 zum Studium kollektiver Anregungen genutzt. Zugleich begann die Erforschung der Teilchenübertragung in Reaktionen mit schnellen Projektilen (z. B. Abstreifen eines Neutrons aus einem vorbeifliegenden Deuteron), die durch den neuen Reaktionsmechanismus der direkten Reaktion erklärt wurde und eine Fülle von Daten zur Struktur der Kerne in den so gebildeten Zuständen hervorbrachte. Ab den 1960/70er Jahren wurden zunehmend an Schwerionenbeschleunigern die Reaktionen von zwei schweren Kernen bei hochenergetischen Stößen untersucht. Als neuer Typ zeigte sich dabei die tiefinelastische Reaktion, bei der das Projektil tief in den Targetkern eindringt, die Kernmaterie gleichsam zum "Aufkochen" bringt und Anzeichen eines Phasenwechsels analog zur Verdampfung eines Flüssigkeit hervorruft. Mit solchen Reaktionen wurden auch die extrem schweren und meist kurzlebigen Kerne oberhalb von etwa Z=99 hergestellt. Ist das hochenergetische Projektil hingegen ein Proton, findet häufig eine Spallation statt, das ist im ersten Schritt eine Verteilung der Einschussenergie auf alle Nukleonen des getroffenen Kerns, gefolgt von Abregung durch Verdampfung (vorzugsweise) von Neutronen oder Spaltung.

Weitere Themen

Anwendungen (u. a.)

Siehe auch

Literatur

  • Klaus Bethge, Gertrud Werner, Bernhard Wiedemann: Kernphysik. Eine Einführung, 3. Auflage, Springer 2008
  • Theo Mayer-Kuckuk, Kernphysik. 6. durchgesehene Auflage. B.G. Teubner, Stuttgart 1994, ISBN 3-519-03223-6.
  • B. Povh, K. Rith, C. Scholz, F. Zetsche, W. Rodejohann: Teilchen und Kerne: Eine Einführung in die physikalischen Konzepte. 9. Auflage. Springer, 2014, ISBN 978-3-642-37821-8.

Videos

Weblinks

Wiktionary: Atomkern – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. D. Meschede: Gerthsen Physik. 22. Auflage, 2004, S. 630.
  2. nuclide. In: Alan D. McNaught, Andrew Wilkinson, IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. 2. Auflage. Blackwell Scientific Publications, Oxford 1997, ISBN 0-9678550-9-8, doi:10.1351/goldbook.N04257 (englisch, korrigierte Fassung – erstellt von M. Nic, J. Jirat, B. Kosata; mit Aktualisierungen von A. Jenkins [2006–]).
  3. G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra: The NUBASE evaluation of nuclear and decay properties. In: Nuclear Physics. A 729, 2003, S. 3–128, doi:10.1016/j.nuclphysa.2003.11.001 (englisch, in2p3.fr [PDF; abgerufen am 22. November 2015]). „Langlebig“ bedeutet hier eine Halbwertzeit von mindestens 100 ns.
  4. Eintrag zu Isotope. In: Römpp Online. Georg Thieme Verlag
  5. M. Wang et al.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. In: Chinese Physics C. Band 41, Nr. 3, 2017, S. 30003 (nds.iaea.org [PDF; abgerufen am 11. März 2018]).
  6. Friedrich Hund: Geschichte der physikalischen Begriffe. 2. Auflage. Bibliographisches Institut, Mannheim 1978. Band 2: Die Wege zum heutigen Naturbild. ISBN 3-411-05544-8.
  7. Jörn Bleck-Neuhaus: Elementare Teilchen. Von den Atomen über das Standard-Modell bis zum Higgs-Boson. 2., überarbeitete Auflage. Springer, 2013, ISBN 978-3-642-32578-6, ISSN 0937-7433, doi:10.1007/978-3-642-32579-3.