Holzgas

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Die Artikel Biomassevergasung und Holzgas überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zusammenzuführen (→ Anleitung). Beteilige dich dazu an der betreffenden Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. DF5GO • 02:26, 15. Sep. 2013 (CEST)
Holzvergaser an einem Opel P4 (1940)
Holzvergaserlokomotive im Bayerischen Eisenbahnmuseum in Nördlingen. Das Fahrzeug wurde 1916 von Deutz für den Benzolbetrieb gebaut und 1935 von Imbert in Köln umgebaut

Holzgas ist ein brennbares Gas, das sich aus Holz gewinnen lässt. Die Erzeugung erfolgt in Holzvergasern.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Insbesondere in Kriegs- und Krisenzeiten mit Treibstoffmangel wurden Fahrzeuge zumeist in Eigeninitiative mit einem improvisierten Holzvergaser ausgestattet. Sogar die Deutsche Reichsbahn erprobte den Einsatz von Holzkohlevergasern an Rangierlokomotiven der Baureihe Köf II in den 1930er- und 1940er-Jahren (siehe auch: Gasmotor).

Holzgas wurde unter anderem dazu benutzt, Verbrennungsmotoren von Kraftfahrzeugen anzutreiben. Die Generatoren wurden außen an die Karosserie gebaut oder als Anhänger mitgeführt. Die technische Anlage dazu, der Holzvergaser, wurde mit Brennholz befüllt und funktionierte als Festbettvergaser. Durch Erhitzen entwich aus dem Holz das brennbare Gasgemisch (Holzgas). Bis in die frühen 1950er-Jahre waren in Deutschland mit Sonderführerschein etliche Kleinlastwagen im Einsatz, für die nur geprüfte und freigegebene Buchenholzscheite verwendet werden durften. Dabei konnte etwa ein Liter Benzin durch die aus 3 kg Holz gewonnene Gasmenge ersetzt werden. Das speziell für die Holzvergasung getrocknete und in die richtige Größe zerkleinerte Holz wurde als Tankholz bezeichnet und in sogenannten Tankholzwerken produziert und bevorratet.

Ende des Zweiten Weltkriegs gab es in Deutschland etwa 500.000 Generatorgaswagen oder Holzgaswagen. Zu ihrer Versorgung diente die vom Ministerium kontrollierte Generatorkraft – Aktiengesellschaft für Tankholz und andere Generatorkraftstoffe mit ihren zugehörigen Tankstellen.[1]

In der Sowjetunion wurden mit Holzvergasern ausgerüstete Lastwagen in Großserie gebaut. Zu nennen sind insbesondere die Modelle ZIS-21 (auf dem ZIS-5 basierend) sowie der GAZ-42, von dem zwischen 1939 und 1946 knapp 35.000 Exemplare produziert wurden. Grund war, dass insbesondere im hohen Norden der Sowjetunion die Treibstoffversorgung in den 1930er- und 1940er-Jahren noch nicht gesichert war.[2]

Im liechtensteinischen Schaanwald gibt es ein Privatmuseum mit rund 70 Holzgas-Fahrzeugen vom Motorrad bis zur Zugmaschine. Die Oldtimer sind fahrtüchtig und werden von Zeit zu Zeit bewegt, das heißt mit Abfällen einer Möbelfabrik betrieben.[3]

Im Rahmen der Diskussion um die zunehmende Nutzung von nachwachsenden Rohstoffen zum Ende des 20. und Beginn des 21. Jahrhunderts wurde die Holzvergasung sowie die Vergasung anderer organischer Stoffe, vor allem von organischen Reststoffen, zur Gewinnung von gasförmigen Brennstoffen zur Wärme- und Stromerzeugung erneut aufgegriffen und in einzelnen Demonstrationsanlagen realisiert. Aufbauend auf dieser rein energetischen Nutzung wurde zudem die Nutzung des Produktgases als Rohstoff für die chemische Synthese von Biokraftstoffen und Produkten der chemischen Industrie anvisiert und soll in naher Zukunft vor allem für BtL-Kraftstoffe, Dimethylether und Methanol realisiert werden. Durch eine anschließende Methanierung und Aufbereitung kann es als Substitute Natural Gas (SNG) in das Erdgasnetz eingespeist werden. Bei hochwertigen Produktgasen, die über 50 Prozent Wasserstoff enthalten, wird auch vom sogenannten Biowasserstoff gesprochen.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Holzgas besteht aus brennenden Bestandteilen, hauptsächlich aus Kohlenmonoxid 34 % und Methan 13 %, sowie kleineren Anteilen von Ethylen 2 % und Wasserstoff 2 %, sowie aus nicht brennbaren Bestandteilen wie Stickstoff 1 %, Kohlendioxid 49 % und Wasserdampf [4]. Der Heizwert von Holzgas beträgt etwa 8,5 MJ/m3 bei herkömmlicher autothermer Vergasung und über 12 MJ/m3 bei allothermer Vergasung.

Entsprechend der Herstellung kann die Zusammensetzung des Holzgases stark variieren. So enthält das Produktgas bei der Verwendung von Luft (21 Vol.-% Sauerstoff, 78 Vol.-% Stickstoff) einen sehr hohen Stickstoffanteil, der nicht zum Heizwert des Gases beiträgt und die Wasserstoffausbeute reduziert. Dagegen enthalten die Produktgase bei der Nutzung von Sauerstoff und Wasserdampf keinen Stickstoff und haben entsprechend einen höheren Heizwert und eine hohe Wasserstoffausbeute.[5]

Gasnutzung[Bearbeiten | Quelltext bearbeiten]

Das in der Biomassevergasung entstehende Gas kann sowohl energetisch als auch stofflich genutzt werden.

Energetische Nutzung durch Verbrennung[Bearbeiten | Quelltext bearbeiten]

Die derzeit übliche Verwendung für das Gasgemisch der Biomassevergasung ist die motorische Nutzung (nach dem Otto- oder Diesel-Prinzip)[6] oder die Verbrennung in entsprechenden Verbrennungsanlagen zur Erzeugung von Wärme (Dampf) und elektrischem Strom, wobei über eine Kraft-Wärme-Kopplung ein sehr hoher Wirkungsgrad der Energieumsetzung erreicht wird. Das bei der Gaskühlung anfallende Holzgaskondensat muss bei diesen Anlagen ordnungsgemäß behandelt werden, ehe es in einen Vorfluter geleitet werden kann, da es einen hohen biochemischen Sauerstoffbedarf hat. Alternativ dazu kann das Gasgemisch der Biomassevergasung in Festoxidbrennstoffzellen direkt zu Strom umgewandelt werden. Das Wirkprinzip wurde bereits 2004 in Versuchen nachgewiesen.[7]

Nutzung als Synthesegas[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Synthesegas

Außerdem kann ein Produktgas aus Kohlenmonoxid und Wasserstoff für die chemische Synthese verschiedener Produkte als Synthesegas eingesetzt werden. Die stoffliche Nutzung von Synthesegas aus der Biomassevergasung befindet sich noch in der Entwicklung, entsprechende Anlagen finden sich derzeit nur im Labor- und Demonstrationsmaßstab. Die großtechnische Herstellung und Verwendung von CO/H2-Synthesegas findet entsprechend ausschließlich auf der Basis von Erdgas und anderen fossilen Energieträgern wie Kohle und Naphtha statt.

Bei den chemisch-technischen Nutzungsoptionen handelt es sich vor allem um die Wasserstoffherstellung und die darauf aufbauende Produktion von Ammoniak nach dem Haber-Bosch-Verfahren, die Methanolsynthese, verschiedene Oxosynthesen sowie die Produktion von Biokraftstoffen (BtL-Kraftstoffe) und anderen Produkten über die Fischer-Tropsch-Synthese:

Verfahrensschema der Herstellung von BtL-Kraftstoffen
  1. in der Ammoniaksynthese nach dem Haber-Bosch-Verfahren
  2. in der Methanolsynthese
  3. in der Oxosynthese
  4. in der Fischer-Tropsch-Synthese

Neben diesen chemisch-technischen Anwendungsbereichen kann Synthesegas auch über eine Synthesegas-Fermentation biotechnologisch genutzt werden. Produkte dieser Option können beispielsweise Alkohole wie Ethanol, Butanol, Aceton, organische Säuren und Biopolymere sein. Diese Nutzung befindet sich derzeit ebenfalls noch im Entwicklungsstadium und wird entsprechend großtechnisch noch nicht genutzt.

Bei all diesen Nutzungsarten ist zu berücksichtigen, dass das Wasser als Bestandteil der Prozesskette bei einer Abkühlung des Gases kondensiert und in unterschiedlichem Umfang als Holzgaskondensat verschieden stark mit organischen Stoffen belastet ist; die sachgerechte Entsorgung dieses Abwassers (etwa 0,5 Liter pro kg Holz) ist hier im BtL-Schema als „Nebenprodukte“ aufgeführt, sie ist jedoch ein wesentlicher Bestandteil solcher Anlagen.

Biokraftstoffe[Bearbeiten | Quelltext bearbeiten]

Auch bei der Produktion von Biokraftstoffen wird das in der Vergasung entstehende Produktgas als Synthesegas in den bereits beschriebenen Syntheseprozessen genutzt. Dabei stehen sowohl gasförmige Kraftstoffe wie Biowasserstoff, Substitute Natural Gas (Methan, SNG) und Dimethylether als auch Flüssigkraftstoffe wie Methanol und BtL-Kraftstoffe im Fokus.[8]

Biowasserstoff wird aus dem Synthesegas über eine Dampfreformierung gewonnen, Methan kann über eine Methanierung des Gases produziert werden. Zur Herstellung von Methanol und Dimethylether wird die Methanolsynthese eingesetzt. BtL-Kraftstoffe werden über die Fischer-Tropsch-Synthese hergestellt, wobei aufgrund der Prozessparameter sowohl Benzin- wie auch Dieselfraktionen hergestellt werden können.

Belege[Bearbeiten | Quelltext bearbeiten]

  1. Ian Byrne: A 1941 map from Generatorkraft. Juli 2000, online auf PetrolMaps.co.uk, abgerufen am 6. Januar 2017 (englisch).
  2. Gorkowski Awtomobilny Sawod (GAZ). Zur Historie des GAZ-42 und des Holzgasantriebs in der Sowjetunion allgemein. 15. Juni 2007, online auf denisovets.ru, abgerufen am 6. Januar 2017 (russisch).
  3. Martin Ebner: Pack die Buche in den Tank ! In: Südwest Presse Ulm. 16. Mai 2009, online auf martin-ebner.net, abgerufen am 6. Januar 2017.
  4. Zusammensetzung (PDF; 91 kB), auf scheffel.og.bw.schule.de, abgerufen am 24. Februar 2017.
  5. Hermann Hofbauer, Alexander Vogel, Martin Kaltschmitt: Vergasung. Vergasungstechnik. In: Martin Kaltschmitt, Hans Hartmann, Hermann Hofbauer (Hrsg.): Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer Verlag, Berlin / Heidelberg 2009, ISBN 978-3-540-85094-6, S. 600–601.
  6. Martin Zeymer, Yves Noel, Roman Schneider: Abgasemissionen von kleintechnischen Holzvergasungsanlagen – Stand der Technik. In: Gefahrstoffe – Reinhaltung der Luft. Band 75, Nr. 5, 2015, ISSN 0949-8036, S. 167–171.
  7. Florian-Patrice Nagel: Electricity from wood through the combination of gasification and solid oxide fuel cells. Dissertation, Eidgenössische Technische Hochschule ETH Zürich, Nr. 17856, Zürich 2008, online auf ethz.ch (englisch), abgerufen am 6. Januar 2017.
  8. Hermann Hofbauer, Alexander Vogel, Martin Kaltschmitt: Vergasung. Vergasungstechnik. In: Martin Kaltschmitt, Hans Hartmann, Hermann Hofbauer (Hrsg.): Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer Verlag, Berlin / Heidelberg 2009, ISBN 978-3-540-85094-6, S. 599–600.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • T. Metz: Allotherme Vergasung von Biomasse in indirekt beheizten Wirbelschichten. Dissertation, TU-München, 2005, online (PDF; 2,76 MB), auf energetische-biomassenutzung.de, abgerufen am 12. Januar 2017, VDI-Verlag, 2007, ISBN 978-3-18-355406-5.
  • A. Vogel: Dezentrale Strom- und Wärmeerzeugung aus biogenen Festbrennstoffen. Dissertation, Universität Hamburg-Harburg, 2007, IE-Report 2/2007, Hrsg.: Institut für Energietechnik und Umwelt gGmbH, Leipzig, ISSN 1862-8060.
  • Hermann Hofbauer, Alexander Vogel, Martin Kaltschmitt: Vergasung. In: Martin Kaltschmitt, Hans Hartmann, Hermann Hofbauer (Hrsg.): Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer Verlag, Berlin und Heidelberg 2009, ISBN 978-3-540-85094-6, S. 599–669.
  • Heinz Hiller u. a.: Gas Production. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim 2005, doi:10.1002/14356007.a12_169.pub2.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Holzgas – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Holzgas – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen