Lemma von Lax-Milgram

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das Lemma von Lax-Milgram, auch Satz von Lax-Milgram, ist eine Aussage der Funktionalanalysis, einem Teilgebiet der Mathematik, die nach Peter Lax und Arthur Milgram benannt ist. Diese beiden Mathematiker bewiesen 1954 eine erste Version dieses Lemmas, welches die Aussage des Darstellungssatzes von Fréchet-Riesz auf stetige Sesquilinearformen verallgemeinert. Eine allgemeinere Version des Lemmas wurde von Ivo Babuška bewiesen, weshalb diese Aussage auch als Satz von Babuška–Lax–Milgram bekannt ist. Anwendung finden diese Aussagen in der Theorie der partiellen Differentialgleichungen. Mit ihrer Hilfe können Existenz- und Eindeutigkeitsaussagen über Lösungen von partiellen Differentialgleichungen gemacht werden.

Formulierung[Bearbeiten | Quelltext bearbeiten]

Voraussetzungen[Bearbeiten | Quelltext bearbeiten]

Es sei ein Hilbertraum über und es sei eine Sesquilinearform. Zudem gelte eine der folgenden, äquivalenten Bedingungen:

  • ist stetig
  • Es gibt ein mit
  • ist stetig für alle und ist stetig für alle

Aussage[Bearbeiten | Quelltext bearbeiten]

Sind die obigen Voraussetzungen erfüllt, dann existiert genau ein stetiger, linearer Operator , der die Gleichung

für alle erfüllt. Ferner gilt: Die Norm von ist durch beschränkt.

Spezialfall: Koerzitive Sesquilinearform[Bearbeiten | Quelltext bearbeiten]

Ist die Sesquilinearform zudem koerzitiv (häufig auch als stark positiv oder elliptisch bezeichnet), d.h. gibt es , so dass

gilt, dann ist invertierbar mit .

Anwendung auf elliptische Differentialgleichungen[Bearbeiten | Quelltext bearbeiten]

Zur Anwendung kommt das Lemma von Lax-Milgram in der Theorie der partiellen Differentialgleichungen. Insbesondere lassen sich für lineare Differentialgleichungen Existenz und Eindeutigkeit einer schwachen Lösung zeigen, falls obige Bedingungen erfüllt sind. Dies wird nun am Beispiel einer gleichmäßig elliptischen Differentialgleichung zweiter Ordnung illustriert.

Sei

ein gleichmäßig elliptischer Differentialoperator zweiter Ordnung. Das heißt, es gilt für , mit und es existiert ein , so dass das Hauptsymbol für alle die Ungleichung

erfüllt. Mit Hilfe des Lemmas von Lax-Milgram kann man nun zeigen, dass die schwache Formulierung des Dirichlet-Randproblems

genau eine Lösung im Sobolev-Raum für und besitzt. Das heißt man betrachtet für alle Testfunktionen die Gleichung

Partielle Integration der rechten Seite der Gleichung liefert

Setzt man nun

so erhält man eine reellwertige Bilinearform, deren Stetigkeit man mit Hilfe der Hölder-Ungleichung zeigen kann. Die Form ist auch koerzitiv, was aus der Bedingung folgt. Daher erfüllt die Bilinearform die Voraussetzungen des Lemmas von Lax-Milgram. Man sucht nun also eine Lösung der Gleichung

wobei

Da der Ausdruck linear und stetig ist, also ein Element des Dualraums ist, kann man den Darstellungssatz von Fréchet-Riesz anwenden und erhält genau ein , so dass für alle gilt. Und aufgrund des Lemmas von Lax-Milgram hat die Gleichung

für alle genau eine Lösung .

Auf ähnliche Weise kann man auch die Existenz und Eindeutigkeit bei Neumann-Randbedingungen zeigen.

Satz von Babuška–Lax–Milgram[Bearbeiten | Quelltext bearbeiten]

Eine Verallgemeinerung des Lemmas von Lax-Milgram ist der Satz von Babuška–Lax–Milgram. Diese wurde 1971 von Ivo Babuška bewiesen.

Seien und zwei Hilberträume und sei eine stetige Bilinearform. Sei außerdem schwach koerzitiv, das heißt, es existiert ein , so dass

und

gilt. Dann existiert genau ein stetiger, linearer Operator , der die Gleichung

für alle und erfüllt und für die Operatornorm gilt die Ungleichung . Mit anderen Worten existiert genau eine Lösung für Gleichungen .

Literatur[Bearbeiten | Quelltext bearbeiten]