Ordnungsstatistik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

In der Statistik bezeichnet die -te Ordnungsstatistik (auch Ordnungsgröße genannt[1]) den -kleinsten Wert einer Stichprobe.[2] Ordnungsstatistiken sind damit spezielle Zufallsvariablen. Sie werden aus einer vorgegebenen Gruppe von Zufallsvariablen gewonnen und modifizieren diese so, dass die Realisierungen der Ordnungsstatistik den Realisierungen der zugrunde liegenden Zufallsvariablen entsprechen, aber immer der Größe nach geordnet sind.

Daher treten Ordnungsstatistiken insbesondere bei der Untersuchung von zufälligen Strukturen auf, die mit einer Ordnung versehen sind. Dazu zählt beispielsweise die Analyse von Wartezeitprozessen oder die Bestimmung von Schätzfunktionen für den Median oder Quantile.

Definition[Bearbeiten | Quelltext bearbeiten]

Gegeben seien Zufallsvariablen . Sind die Zufallsvariablen bindungsfrei, nehmen also fast sicher nicht denselben Wert an, formell ausgedrückt

für alle ,

so definiert man

und

für . Dann heißen die Ordnungsstatistiken von .[2] Die Zufallsvariable wird dann auch die -te Ordnungsstatistik genannt. Als alternative Notation wird auch anstelle von verwendet. [3]

Sind die Zufallsvariablen nicht bindungsfrei, so lassen sich die Ordnungsstatistiken definieren als

.[2]

Hierbei bezeichnet die Indikatorfunktion auf der Menge . Im bindungsfreien Fall stimmen beide Definitionen überein. Nicht alle Autoren fordern wie oben, dass die Zufallsvariablen fast sicher ungleiche Werte annehmen. Die Eigenschaften der Ordnungsstatistiken variieren dann leicht.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Fordert man in der Definition

für alle ,

so gilt

fast sicher.[2]

Äquivalent dazu gilt für die Realisierungen

für fast alle Ereignisse .

Die Realisierungen der Ordnungsstatistiken sind also (fast sicher) strikt aufsteigend.

Verzichtet man auf die Forderung, dass die Zufallsvariablen fast sicher nicht dieselben Werte annehmen sollen, so gilt entsprechend

fast sicher. [4]

Die Realisierungen sind dann nur noch (fast sicher) aufsteigend.

Verteilung der Ordnungsstatistiken[Bearbeiten | Quelltext bearbeiten]

Für die Verteilungsfunktion der -ten Ordnungsstatistik gilt

Wichtige Spezialfälle der Verteilung ergeben sich für das Minimum () und Maximum () als

Hat die Verteilung von eine Dichtefunktion , dann erhält man durch Differenzieren die Dichtefunktion

der -ten Ordnungsstatistik.

Anwendung[Bearbeiten | Quelltext bearbeiten]

In der nichtparametrischen Statistik lassen sich Rangstatistiken oder empirische Verteilungsfunktionen durch Ordnungsstatistiken ausdrücken. Zudem können aus Ordnungsstatistiken schwach konsistente Schätzer für Quantile abgeleitet werden. Weiter lassen sich durch oben genannte Verteilung über Faltungen und Transformationssätze die Verteilung von wichtigen Maßzahlen wie dem Median oder der Spannweite gewinnen.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Wahrscheinlichkeitsdichten der Ränge 10 (Gold), 9 (Silber) und 8 (Bronze)

Es wird das Finale eines Wettbewerbs der Leichtathletik, bestehend aus den besten Teilnehmern, ausgetragen. In diesem Beispiel wird angenommen, dass die Leistungsdichte im Finale des Wettkampfes sehr groß ist und es daher keine Favoriten für die Medaillen gibt. Für die zufällige Gesamtpunktzahl jedes Athleten wird daher dieselbe stetige Gleichverteilung im Punktebereich von bis angenommen. Es entscheidet demnach ausschließlich die Tagesform über die Gesamtpunktzahl, welche starken Schwankungen unterliegt, und alle Athleten besitzen das gleiche Leistungspotential. Setzt man die Dichtefunktion und die Verteilungsfunktion

der stetigen Gleichverteilung in die obige Dichtefunktion der Ordnungsstatistik ein, erhält man die Verteilungen für die einzelnen Ränge. Da die Punktzahlen in der Ordnungsstatistik aufsteigend sortiert sind, erhält man für die Wahrscheinlichkeitsverteilung für die Goldmedaille, für die der Silbermedaille und für die der Bronzemedaille. Der nebenstehenden Grafik ist bereits zu entnehmen, dass für die Goldmedaille eine höhere Punktzahl zu erwarten ist als für die Silber- oder Bronzemedaille. Da die Punkte in diesem Beispiel als stetige Gleichverteilung modelliert wurden, ist die -te Ordnungsstatistik für (siehe Grafik) jeweils Beta-verteilt (multipliziert mit ) mit den Parametern und . Der Erwartungswert einer solchen Betaverteilung ist . Für die Goldmedaille ist daher eine Punktzahl von , für Silber und für Bronze zu erwarten. Falls ein Athlet bereits Punkte erhalten hat und auf die Punktzahlen der anderen Sportler wartet, kann er unter den gemachten Annahmen seine eigenen Chancen für Gold berechnen. Die Wahrscheinlichkeit, dass die anderen Athleten alle schlechter abschneiden, beträgt . Falls der Athlet insgesamt Punkte erhält, wie für die Goldmedaille erwartet, wird er also trotzdem nur mit einer Wahrscheinlichkeit von die Goldmedaille bekommen.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Herbert Büning und Götz Trenkler: Nichtparametrische statistische Methoden. 2. Auflage, de Gruyter, Berlin und New York 1994, ISBN 3-11-016351-9

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Claudia Czado, Thorsten Schmidt: Mathematische Statistik. Springer-Verlag, Berlin Heidelberg 2011, ISBN 978-3-642-17260-1, S. 23, doi:10.1007/978-3-642-17261-8.
  2. a b c d Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 242–243, doi:10.1515/9783110215274.
  3. Norbert Henze: Stochastik für Einsteiger. Eine Einführung in die faszinierende Welt des Zufalls. 10. Auflage. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-03076-6, S. 323, doi:10.1007/978-3-658-03077-3.
  4. David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 978-3-540-21676-6, S. 290, doi:10.1007/b137972.