Paradoxon

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Paradoxie)
Wechseln zu: Navigation, Suche
Das Penrose-Dreieck erweckt den Anschein, es handele sich um eine geschlossene dreidimensionale Struktur aus drei rechten Winkeln, was in der euklidischen Geometrie jedoch unmöglich ist.

Ein Paradoxon (Plural Paradoxa; auch Paradox oder Paradoxie, Plural Paradoxe bzw. Paradoxien; vom altgriechischen Adjektiv παράδοξος parádoxos „wider Erwarten, wider die gewöhnliche Meinung, unerwartet, unglaublich“[1]) ist ein Befund, eine Aussage oder Erscheinung, die dem allgemein Erwarteten, der herrschenden Meinung oder Ähnlichem auf unerwartete Weise zuwiderläuft oder beim üblichen Verständnis der betroffenen Gegenstände bzw. Begriffe zu einem Widerspruch führt.[2] Die Analyse von Paradoxien kann zu einem tieferen Verständnis der betreffenden Gegenstände bzw. Begriffe oder Situationen führen, was den Widerspruch im besten Fall auflöst.

Formen[Bearbeiten | Quelltext bearbeiten]

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.
Fried-Zitat auf einem Rest der Berliner Mauer

Es existieren verschiedene spezielle Formen des Paradoxons:

  1. logische Paradoxa – Widersprüchlichkeit als Folge der Negation von Selbstbezüglichkeit, d. h. wenn eine auf sich selbst anwendbare Aussage negiert wird. Sie sind mit der Russellschen Antinomie verwandt. Ein Beispiel ist das sogenannte Lügner-Paradox des Eubulides:
    Dieser Satz ist falsch. (Eine solche Aussage ist wahr, wenn sie falsch ist, und falsch, wenn sie wahr ist.) Eine besondere Form des selbstbezüglichen Widerspruchs ist der sogenannte performative Widerspruch zwischen propositionalem Gehalt und performativem Gehalt.
  2. metaphysische Paradoxa – Phänomene, die mit den zur Verfügung stehenden Mitteln nicht begreifbar sind oder sich der Begreifbarkeit prinzipiell entziehen. Hierzu gehört
    die Frage nach der Endlichkeit beziehungsweise der Unendlichkeit von Raum und Zeit. Ein unendliches Universum scheint dem gesunden Menschenverstand ebenso zu widersprechen wie beispielsweise ein endliches: „Alles muss doch zu irgendeinem Zeitpunkt angefangen haben.“ – „Aber was war dann davor?“
  3. semantische Paradoxa
  4. rhetorische Paradoxa – ein Rhetorisches Stilmittel, bei dem eine tiefergehende Wahrheit durch einen Widerspruch deutlich und drastisch dargestellt werden soll (z. B. Oxymoron). Beispiel: Weniger ist mehr!

Gemeinsam ist allen Paradoxa der Widerspruch zwischen dem Behaupteten einerseits und den Erwartungen und Beurteilungen andererseits, die sich aus vertrauten Denkheuristiken, Vorurteilen, Gemeinplätzen, Mehrdeutigkeiten oder begrenzten Perspektiven als alltägliche Meinung (doxa) ergeben. Auch scheinbare Widersprüche, die sich durch genauere Analyse vollständig auflösen lassen, wirken daher im ersten Moment paradox oder galten im Laufe der Geistesgeschichte als unlösbare Paradoxa oder Aporien. Auflösbare Paradoxien sind wahre Aussagen, deren Untersuchung – beispielsweise im Rahmen eines Gedankenexperiments – zu wichtigen Erkenntnisfortschritten in Wissenschaft, Philosophie und Mathematik führen kann, die für das Alltagsverständnis aber unerwartet oder überraschend sind. Der Widerspruch besteht hier oft nur zwischen der erwarteten und der tatsächlichen Lösung. Ein Beispiel aus der Mathematik ist das Ziegenproblem, das logisch und mathematisch exakt lösbar ist, aber der Erwartung vieler Menschen widerspricht.

Als ästhetisches Motiv in der Wissenschaft[Bearbeiten | Quelltext bearbeiten]

Die Aufzählung der Paradoxien in den verschiedenen Wissenschaften belegt, dass das Erkennen und Lösen von Paradoxien ein bedeutendes Motiv wissenschaftlicher Arbeit sein kann.[3] Der Mathematiker Roger Penrose drückte es einmal so aus:

„Paradoxien empfinde ich als ausgesprochen reizvoll. Sie sehen so etwas und versuchen zu verstehen, wie um Himmels Willen könnte das einen Sinn ergeben?! Selbst das ist paradox: Ich habe viel für Paradoxien übrig, und gleichzeitig will ich sie aus der Welt schaffen!“

Gábor Paál: Was ist schön? Ästhetik und Erkenntnis. S. 205.[3]

Der wissenschafts-ästhetische Reiz von Paradoxien zeigt sich auch daran, dass sich Künstler wie M. C. Escher von den Paradoxien in der Mathematik und Physik inspirieren ließen. So gab es zeitweise einen engen Austausch zwischen Penrose und Escher: So hat Penrose sich als Mathematiker mit geometrisch „unmöglichen“ Formen befasst. Von ihm stammt unter anderem das berühmte Penrose-Dreieck. Escher wiederum hat diese Gedanken aufgegriffen und in seinen Grafiken umgesetzt. Auch für andere Wissenschaftler und Denker wie Bertrand Russell, Gregory Bateson oder Arthur Koestler waren Paradoxien in ihren unterschiedlichen Facetten ein zentrales Thema.

Ideologie[Bearbeiten | Quelltext bearbeiten]

Gesellschaftliche Ideologien enthalten in der Praxis oft paradoxe Elemente, vor allem wenn sie mit absolut gesetzten Werten wie Freiheit oder Gleichheit operieren. Beispiele: So werden, um eine „freiheitliche“ Ordnung aufrechtzuerhalten, Maßnahmen eingesetzt, die die Freiheit einschränken (z. B. McCarthy-Ära in den USA oder auch die aktuellen Debatten um die Einschränkung von Bürgerrechten im Anti-Terror-Kampf). Umgekehrt wurden in kommunistischen Ideologien, um das Ideal der „Gleichheit“ zu erhalten, Systeme etabliert, in denen einige deutlich „gleicher“ waren als andere. Praktisch alle politischen Ideologien, in denen „der Zweck die Mittel heiligt“, beinhalten diese Paradoxie: In der Durchsetzung bestimmter Werte für die Zukunft werden die gleichen Werte in der Gegenwart geopfert.

Wie bei vielen Paradoxien entsteht der Widerspruch auch hier durch die Anwendung eines Prinzips (Freiheit, Gleichheit) auf sich selbst und auf die Bedingungen, die dieses Prinzip ermöglichen sollen.

Psychologie[Bearbeiten | Quelltext bearbeiten]

Zu den psychologischen Paradoxien gehören Fälle, in denen Menschen sich genau entgegen der „Logik“ verhalten. Dazu gehört die sogenannte „Sei-spontan-Paradoxie“, wie es häufig in Beziehungen zum Ausdruck kommt: Die Erwartung, dass mein Gegenüber seine Entscheidungen gefälligst frei und selbständig treffen soll – und genau damit seine Unselbständigkeit unter Beweis stellen würde. Der Wunsch „Sag mir doch öfter mal spontan, dass du mich liebst!“ ist, sobald ausgesprochen, nicht mehr erfüllbar.

„Ich liebe dich“ – „Das sagst du jetzt nur wegen meiner Bitte neulich!“.

In den sogenannten paradoxen Interventionen werden psychologische Paradoxien wiederum gezielt eingesetzt, insbesondere dann, wenn das Gegenüber (ein Kind zum Beispiel) ein trotziges Verhalten zeigt und auf Aufforderungen bewusst mit dem Gegenteil reagiert. Entsprechend wird in der paradoxen Intervention eine Erwartung geäußert, deren Gegenteil eigentlich erreicht werden soll.

Ein weiteres Beispiel für psychologische Paradoxien sind die sogenannten „gemischten Botschaften“, wenn zwischen dem was gesagt wird und der Art wie es gesagt wird, ein Widerspruch besteht. Beispiel: die „angebaggerte“ Frau, die „Nein“ sagt, dabei aber freundlich lächelt. In langdauernden Beziehungen können so die von Gregory Bateson beschriebenen sogenannten Double-Bind-Kommunikationsstrukturen entstehen, wenn also zum Beispiel einer der Partner (insbesondere in Eltern-Kind-Beziehungen) dem anderen seine Zuneigung immer mit unbewegter Mimik, emotionsloser Stimme und ohne Körperkontakt versichert.

Paradoxien in der Populärkultur[Bearbeiten | Quelltext bearbeiten]

Großvater-Paradoxon: Ein Zeitreisender, der in der Vergangenheit seinen Großvater umbringt, würde nicht geboren werden, und könnte daher nie seinen Großvater umgebracht haben.

In Das Leben des Brian von Monty Python findet sich in der „Balkonszene“ folgendes paradoxes Geschehen: Brian wird gegen seinen Willen für den Messias gehalten und fordert seine Anhänger auf, Individuen zu sein:

Brian:
Hört zu. Ihr versteht das alles falsch. Es ist wirklich nicht nötig, dass ihr mir folgt.

Es ist völlig unnötig, einem Menschen zu folgen, den ihr nicht mal kennt. Ihr müßt nur an euch selbst denken. Ihr seid doch alle Individuen.

Menge:
Ja! Wir sind alle Individuen!
Brian:
Und ihr seid alle völlig verschieden!
Menge:
Ja! Wir sind alle völlig verschieden!
Dennis:
Ich nicht!
Menge:
Pscht!!

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Paradoxon – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Paradoxes – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Wilhelm Pape, Max Sengebusch (Bearb.): Handwörterbuch der griechischen Sprache. 3. Auflage, Braunschweig 1914.
  2. Arnim Regenbogen, Uwe Meyer: Wörterbuch der Philosophischen Begriffe, Hamburg: Meiner 1997, ISBN 978-3787313259.
  3. a b Paál: Was ist schön? 2003, S. 194–206.