Spin-Bahn-Kopplung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Spin-Bahn-Kopplung oder Spin-Bahn-Wechselwirkung ist eine in der Atom-, Kern- und Elementarteilchenphysik auftretende Wechselwirkung, deren Stärke von der Stellung des Spins des Teilchens relativ zu seinem Bahndrehimpuls abhängt. Bei gebundenen Teilchen führt die Spin-Bahn-Wechselwirkung zu einer Aufspaltung von Energieniveaus, die zur Feinstruktur des Niveauschemas beiträgt. Für die Elektronen der Atomhülle sind diese Effekte relativ geringfügig, haben aber wichtige Auswirkungen auf den Atombau.

Die Spin-Bahn-Wechselwirkung wird im Rahmen der nichtrelativistischen Quantenmechanik durch einen eigenen Term in der Schrödingergleichung ausgedrückt, der das Skalarprodukt von Bahn- und Spindrehimpuls des Teilchens enthält. In der relativistischen Quantenmechanik ergibt sich ein entsprechender Energiebeitrag automatisch.

Gebundene Teilchen[Bearbeiten | Quelltext bearbeiten]

Die Spin-Bahn-Wechselwirkung wurde bei den Elektronen in der Atomhülle zuerst beobachtet. Hier bewirkt sie eine Aufspaltung der Spektrallinien und trägt damit (neben relativistischen Effekten und dem Darwin-Term) zur Feinstruktur der Atomspektren bei. Ein bekannter Fall ist die Aufspaltung der gelben D-Linie von Natrium, die sich bereits mit einem guten Prisma beobachten lässt.

Wesentlich stärker ist die Spin-Bahn-Wechselwirkung für die Protonen und Neutronen im Atomkern (siehe Schalenmodell (Kernphysik)).

Halbklassische Deutung für ein Elektron[Bearbeiten | Quelltext bearbeiten]

Nimmt man Eigendrehimpuls (Spin) und magnetisches Moment des Elektrons als vorgegeben, lässt sich die Spin-Bahn-Kopplung anschaulich schon im Bohrschen Atommodell begründen: Aus der Maxwelltheorie und der speziellen Relativitätstheorie folgt, dass auf ein Elektron, wenn es im elektrischen Feld eines Atomkerns kreist, ein magnetisches Feld wirkt. Im Ruhesystem des Elektrons wird nämlich eine kreisende Bewegung des Kerns wahrgenommen. Diese Bewegung stellt aufgrund der Ladung des Kerns einen Kreisstrom dar, welcher nach dem Gesetz von Biot-Savart ein Magnetfeld parallel zum Bahndrehimpulsvektor erzeugt. Da das magnetische Moment des Elektrons zu seinem Spin antiparallel ist, ergibt sich für eine Spinrichtung parallel zum Feld eine höhere Energie und für die entgegengesetzte eine niedrigere. Da für einen Spin 1/2 nur diese zwei Einstellmöglichkeiten existieren, wird ein einzelnes Energieniveau in zwei Niveaus aufgespalten, und es gibt in den optischen Spektren zwei gegenüber der ursprünglichen Lage leicht verschobene Linien, die bei grober Betrachtung aber als eine erscheinen.

In der nichtrelativistischen Quantenmechanik wird für jedes Elektron ein entsprechender Summand in der Schrödingergleichung hinzugefügt, in der relativistischen Quantenmechanik ergeben sich Spin, magnetisches Moment und Spin-Bahn-Wechselwirkung automatisch aus der Diracgleichung.

Spin-Bahn-Kopplungsenergie für ein Elektron[Bearbeiten | Quelltext bearbeiten]

Der Operator für die Spin-Bahn-Wechselwirkung eines Elektrons im elektrostatischen Zentralfeld lautet[1]

Darin ist die Spin-Bahn-Kopplungskonstante

,

die von der Stärke des durch die Bahnbewegung des Elektrons hervorgerufenen Magnetfelds und seines magnetischen Moments abhängt.

me bezeichnet die Elektronenmasse, e die Elektronenladung, µ0 die magnetische Feldkonstante und das reduzierte plancksche Wirkungsquantum, r den Abstand des Elektrons vom Atomkern.

Daraus ergibt sich für Zustände mit folgende Energieverschiebung:

j ist die Quantenzahl des Gesamtdrehimpulses des Teilchens, der in halbzahligen Vielfachen von gequantelt ist. Da der Entartungsgrad der Niveaus ist, bleibt ihr gewichteter Schwerpunkt von der Spin-Bahn-Aufspaltung unbeeinflusst (Regel der Spektroskopischen Stabilität). Im Bohrschen Modell ist r der Bahnradius des Elektrons, (n Hauptquantenzahl, Bohrscher Radius). Daher ist am größten für die innerste bohrsche Bahn (n=1). Insgesamt wächst die Aufspaltung durch Spin-Bahn-Kopplung mit steigender Ordnungszahl also wie . In quantenmechanischer Behandlung ist der Faktor durch den über das jeweilige Orbital genommenen Mittelwert zu ersetzen. Bei Vernachlässigung der Einflüsse anderer Elektronen ergibt sich

Der Abstand zwischen den aufgespaltenen Niveaus zu beträgt (siehe auch Landésche Intervallregel). Er tritt z. B. bei der Röntgenphotoelektronenspektroskopie (XPS), bei der Absorption von Röntgenstrahlung und der Emission von charakteristischer Röntgenstrahlung experimentell in Erscheinung, weil diese Prozesse direkt von der Bindungsenergie einzelner Elektronen in inneren Schalen des Atoms abhängen.

Kopplungsschemata bei mehreren Teilchen[Bearbeiten | Quelltext bearbeiten]

Wenn der Gesamtdrehimpuls des Atoms sich aus den Spins und Bahndrehimpulsen von mindestens zwei Teilchen () zusammensetzt, gibt es verschiedene Möglichkeiten, Zwischensummen der Drehimpulse mit jeweils eigenen Quantenzahlen zu bilden. Diese Möglichkeiten werden als Kopplungsschema bezeichnet. Die wichtigsten sind die jj-Kopplung mit Quantenzahlen für die Gesamtdrehimpulse jedes einzelnen Teilchens, und die LS-Kopplung mit Quantenzahlen und für die Summe Bahndrehimpulse bzw. Spins aller Teilchen. Grundsätzlich kann man jeden Mehrelektronenzustand wahlweise durch Überlagerung von jj-Basiszuständen oder LS-Basiszuständen darstellen. Fortgeschrittene Berechnungen der Struktur der Energieeigenzustände der Atomhülle gehen immer von einem solchen intermediären Kopplungsschema aus.

jj-Kopplung bei mehreren Elektronen[Bearbeiten | Quelltext bearbeiten]

Für jedes Teilchen werden Spin- und Bahndrehimpuls addiert und ergeben dessen Gesamtdrehimpuls mit Quantenzahl . Aus diesen 1-Teilchen-Gesamtdrehimpulsen wird der Gesamtdrehimpuls der Elektronenhülle mit Quantenzahl gebildet. Sind es mehr als zwei Teilchen, gibt es hier wiederum mehrere Möglichkeiten, die aber keine eigenen Namen erhalten haben.

Das jj-Kopplungsschema ergibt Zustände, die bei starker Spin-Bahn-Wechselwirkung eine gute Näherung and die Energieeigenzustände des Atoms darstellen. In den Atomen nimmt die Stärke der Spin-Bahn-Wechselwirkung mit steigender Hauptquantenzahl n ab, mit steigendem Z (z. B. bei Blei mit Z=82) aber zu. Sie spielt bei mittelschweren Atomen in den inneren Schalen und bei schweren Atomen in der ganzen Hülle oft eine größere Rolle als die gegenseitige Störung der Elektronen untereinander. Jedes Elektron befindet sich daher in einem Zustand mit einer „guten Quantenzahl“ ji für seinen Gesamtdrehimpuls. Bei der Zusammensetzung der Drehimpulse ji der einzelnen Elektronen zum Gesamtdrehimpuls J des Atoms ergibt sich der Gesamtdrehimpuls einer abgeschlossenen Schale oder Unterschale immer zu Null. Daher sind für den Gesamtdrehimpuls der Atomhülle nur die Elektronen in nicht vollbesetzten Schalen zu berücksichtigen.

LS-Kopplung bei mehreren Elektronen[Bearbeiten | Quelltext bearbeiten]

Aus den Bahndrehimpulsen aller Teilchen wird ein Gesamtbahndrehimpuls mit Quantenzahl gebildet, ebenso aus den Spins ein Gesamtspin mit Quantenzahl . Aus und wird der Gesamtdrehimpuls der Elektronenhülle mit Quantenzahl gebildet. Irrtümlich wird die LS-Kopplung aufgrund ihres Namens leicht mit der Spin-Bahn-Wechselwirkung in Zusammenhang gebracht oder sogar damit verwechselt. Gelegentlich wird die LS-Kopplung auch als Russell-Saunders-Kopplung bezeichnet, benannt nach Henry Norris Russell und Frederick Albert Saunders.

Die LS-Kopplung herrscht vor, wenn die Spin-Bahn-Wechselwirkung vernachlässigt werden kann. Das gilt bei den Energieeigenzuständen der leichteren Atome, bei denen die gegenseitige elektrostatische Störung der Elektronen eine größere Rolle spielt als die Spin-Bahn-Wechselwirkung jedes einzelnen Elektrons. Die oben beschriebene Abhängigkeit der Energie eines jeden einzelnen Elektrons vom Skalarprodukt ist bei kleineren Kernladungszahlen Z nämlich so schwach, dass die Elektronen in einer nicht abgeschlossenen Schale in erster Linie durch ihre wechselseitige Coulombabstoßung beeinflusst werden, die von den Spins unabhängig ist. Die Gesamtwellenfunktion eines Energieeigenzustands ist daher in guter Näherung als ein Produkt einer Ortswellenfunktion aller Elektronen mit einer Spinfunktion aller Elektronen anzusetzen. In solchen Zuständen hat (außer für ) kein Elektron einen Zustand inne, der durch eine Quantenzahl für seinen Gesamtdrehimpuls gekennzeichnet ist. Jedoch hat der Gesamtbahndrehimpuls

eine feste Größe (Quantenzahl , Eigenwert zum Operator ), die auch die Energie dieser Zustände bestimmt. Da in dieser Näherung die Energie nicht von den Spins abhängt, handelt es immer um entartete Zustände zum gleichen , die formal weiter nach der Quantenzahl für den Gesamtspin der Elektronen aufgeschlüsselt werden können:

.

(Tatsächlich braucht man abgeschlossene Schalen dabei nicht zu berücksichtigen, denn sie haben automatisch .) Wenn mindestens zwei Elektronen in derselben Unterschale sind, dann können und jeweils mehrere verschiedene Werte haben. Sofern die Coulombabstoßung und weitere Energiebeiträge – noch – vernachlässigt sind, gehören sie alle zur gleichen Energie (Entartung). Dabei kommen aber nur die Kombinationen von und vor, die dem Pauli-Prinzip entsprechen, d. h. die eine antisymmetrische Wellenfunktion ergeben, wenn zwei Elektronen miteinander vertauscht werden. Nun sind die Ortswellenfunktion zweier Elektronen zu gegebenem für sich allein bei Vertauschung (innerhalb einer Unterschale) immer schon entweder symmetrisch oder antisymmetrisch, je nachdem ob gerade oder ungerade ist. Auch die Spinwellenfunktion zu gegebenem Gesamtspin ist entweder symmetrisch oder antisymmetrisch, nur im umgekehrten Sinn. Damit insgesamt eine fermionische antisymmetrische Wellenfunktion entsteht, müssen Orts- und Spinfunktion eines Niveaus entgegengesetzte Symmetrie haben.

Wird im nächsten Schritt die Coulomb-Abstoßung der Elektronen berücksichtigt, wird die Energie des Zustands angehoben. Dieser Energiebeitrag ist für die Ortswellenfunktionen zu verschiedenen Gesamtbahndrehimpulsen verschieden, insbesondere ist die Abstoßung für eine symmetrische Ortswellenfunktion ( gerade) größer als für antisymmetrische ( ungerade). Die Energie hängt also vom Symmetriecharakter der Ortswellenfunktion ab, der, wie eben dargestellt, umgekehrt zum Symmetriecharakter der jeweiligen Spinfunktion sein muss. So ergibt sich schließlich für jeden Wert von eine andere Energie, obwohl die Spins der Elektronen an den Wechselwirkungen rechnerisch überhaupt noch nicht beteiligt wurden. Für leichte Atome (bis etwa zur Kernladungszahl ) ist das eine gute Näherung. Den Niveaus leichter Atome können damit die Quantenzahlen und zugeordnet werden. Dies ist das LS-Kopplungsschema. Zur jj-Kopplung ist es in gewissem Sinn entgegengesetzt (aber die nach LS-Kopplung gebildeten Zustände sind nicht automatisch orthogonal zu den nach jj-Kopplung gebildeten).

Im folgenden Schritt wird die immer noch existente Spin-Bahn-Kopplung eines jeden Elektrons berücksichtigt. Sie macht sich bei den LS-Zuständen durch eine weitere feine Aufspaltung bemerkbar, durch die jedem möglichen Eigenwert zum Gesamtdrehimpuls eine etwas verschiedene Energie zugeordnet wird (als ob es eine Wechselwirkung der Form gäbe). Es entsteht ein Multiplett mit (im Allgemeinen) eng benachbarten Niveaus, die in ihren Quantenzahlen und alle übereinstimmen.

In LS-Kopplung hat also jedes Elektron nach wie vor die Quantenzahlen , aber nicht . Ein Niveau der ganzen Atomhülle hat die drei Quantenzahlen , die im Termsymbol zusammengefasst werden.

Mit zunehmender Kernladungszahl wird die Beschreibung nach der LS-Kopplung eine immer schlechtere Näherung, bis ab mittleren Kernladungszahlen die Spin-Bahn-Wechselwirkung der einzelnen Elektronen so groß wird, dass das jj-Kopplungsschema zunehmend besser zutrifft. Man sagt, die LS-Kopplung wird aufgebrochen. Der Übergangsbereich zwischen beiden Kopplungsschemata wird als intermediäre Kopplung (engl. intermediate coupling) bezeichnet. Sie zeichnet sich bspw. durch eine Aufweichung des Interkombinationsverbotes auf.[2]

Aufspaltung im Magnetfeld[Bearbeiten | Quelltext bearbeiten]

Wasserstoffniveaus und Spinbahnwechselwirkung unter Einfluss eines Magnetfeldes.

Ein Niveau mit bestimmtem , und enthält einzelne Zustände mit verschiedenem . Ohne Magnetfeld sind sie energetisch entartet und bilden ein einziges Niveau. Bei endlichem Magnetfeld gilt das nicht mehr:

  • In einem schwachen Magnetfeld behalten die drei Quantenzahlen , und ihren Sinn, aber die Energien spalten nach den auf. Es entstehen Niveaus (mit gleichen , , ). Die magnetische Zusatzenergie dieser Energieeigenzustände ist proportional zum Magnetfeld und zu (siehe Zeeman-Effekt und Landé-Faktor).
  • Wird diese Aufspaltung so groß, dass sie gegenüber dem Energieunterschied zu den Niveaus mit benachbarten -Werten nicht mehr vernachlässigbar ist, wird die Kopplung von und zu einem festen Wert zunehmend aufgebrochen. Die Energieeigenzustände haben dann nach wie vor die Quantenzahlen und , sind aber Überlagerungen der Zustände mit verschiedenem , haben als aber keine festen Quantenzahl mehr. Ihre Energien variieren nichtlinear mit dem Magnetfeld, bis im Extremfall des starken Feldes (Paschen-Back-Effekt) die Zustände zu festen Werten und zu Energieeigenzuständen werden und deren Energien wieder linear vom Magnetfeld abhängen.

Das gleiche geschieht auch bei einem einzelnen äußeren Elektron mit bestimmtem , und . Während im schwachen Magnetfeld alle Niveaus je nach ihre Zeeman-Aufspaltung proportional zeigen, gehen die Niveaus im starken Magnetfeld in Zustände zu festen Quantenzahlen und über (s. Abbildung).

Ungebundene Teilchen[Bearbeiten | Quelltext bearbeiten]

Wenn ein Teilchen beispielsweise gestreut und dadurch aus seiner Flugrichtung abgelenkt wird, ruft die Spin-Bahn-Wechselwirkung im Allgemeinen eine Abhängigkeit des differentiellen Wirkungsquerschnitts vom Azimutwinkel hervor (siehe auch Spinpolarisation, Mott-Streuung). Auch in Kernreaktionen und für alle Elementarteilchen mit starker Wechselwirkung (Hadronen) spielt die Spin-Bahn-Wechselwirkung eine entsprechende Rolle.

Einzelnachweise und Fußnoten[Bearbeiten | Quelltext bearbeiten]

  1. Hermann Haken, Hans Christoph Wolf: Atom- und Quantenphysik. Einführung in die experimentellen und theoretischen Grundlagen. 8., aktualisierte und erweiterte Auflage. Springer, Berlin u. a. 2004, ISBN 3-540-02621-5.
  2. Hermann Haken, Hans Christoph Wolf: Atom- und Quantenphysik – Einführung in die experimentellen und theoretischen Grundlagen. 8. Auflage. Springer, Berlin 2003, ISBN 3-540-02621-5, S. 329.

Weblinks[Bearbeiten | Quelltext bearbeiten]