Ungleichung von Ottaviani-Skorokhod

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 1. Oktober 2016 um 00:08 Uhr durch NikelsenH (Diskussion | Beiträge) (kat). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Die Ungleichung von Ottaviani-Skorokhod ist eine stochastische Ungleichung innerhalb des Gebiets der Wahrscheinlichkeitsrechnung, welche auf die beiden Mathematiker Giuseppe Ottaviani und Anatoli Skorokhod zurückgeht. Sie bezieht sich auf endliche Familien von stochastisch unabhängigen reellen Zufallsvariablen und stellt ein nützliches Hilfsmittel für Beweise im Umfeld des Starken Gesetzes der großen Zahlen dar.[1]

Formulierung der Ungleichung

Der Darstellung von Heinz Bauer folgend lässt sich die Ungleichung angeben wie folgt:[1]

Gegeben seien ein Wahrscheinlichkeitsraum und darauf endlich viele unabhängige Zufallsvariablen
Sei hierbei für
gesetzt.
Dann ist für jeden Index und für zwei reelle Zahlen und
die Ungleichung
  .[2]
erfüllt.

Folgerungen: Ein Satz von Lévy und weitere Korollare

Mit der Ungleichung von Ottaviani-Skorokhod lassen sich der folgende Satz des französischen Mathematikers Paul Lévy herleiten und einige Korollare herleiten.

Der lévysche Satz besagt:[1]

Für jede unabhängige Folge reeller Zufallsvariablen folgt aus der stochastischen Konvergenz der Reihe   die fast sichere Konvergenz dieser Reihe.

Daraus erhält man folgendes Korollar:

Ist eine unabhängige Folge reeller Zufallsvariablen mit
(1)
(2)
so ist die Reihe fast sicher konvergent.

Aus diesem Korollar gewinnt man dann unter Anwendung des kroneckerschen Lemmas unmittelbar das kolmogoroffsche Kriterium zum Starken Gesetz der großen Zahlen[3]:

Ist eine unabhängige Folge von integrierbaren reellen Zufallsvariablen mit
(*)
so genügt die Folge dem Starken Gesetz der großen Zahlen.

Anmerkungen

  1. Die Ungleichung von Ottaviani-Skorokhod (und auch Abwandlungen derselben) verbinden einige Autoren nur mit dem Namen von Giuseppe Ottaviani und bezeichnen diese als Ungleichung von Ottaviani bzw. als ottavianische Ungleichung (englisch Ottaviani's inequality) . Vielfach wird dabei auch allein der Fall behandelt.[4][5][6]
  2. In dem Hochschultext von Peter Gänssler und Winfried Stute erscheint die Ungleichung (in einer anderen und sogar etwas allgemeineren Fassung) als Skorokhod-Ungleichung.[7]
  3. Die obige Darstellung der Ungleichung, welche unabhängige reelle Zufallsvariablen zugrundelegt, lässt sich in entsprechender Weise auch (etwa) für unabhängige borelmessbare Zufallsvariablen mit Werten in einem separablen Banachraum formulieren. Dabei tritt an die Stelle der obigen Betragsfunktion die Norm des Banachraums.[8]

Quellen und Hintergrundliteratur

Originalarbeiten

Monographien

Einzelnachweise und Fußnoten

  1. a b c Heinz Bauer: Wahrscheinlichkeitstheorie. 2002, S. 107-113
  2. Mit wird die reelle Betragsfunktion bezeichnet.
  3. Das kolmogoroffsche Kriterium wird oft auch als Kolmogoroffs Erstes Gesetz der großen Zahlen bezeichnet. Vgl. Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie: Eine Einführung. 2014, S. 251!
  4. J. Hoffmann-Jørgensen: Probability with a View toward Statistics. 1994, S. 472-473
  5. Oleg Klesov: Limit Theorems for Multi-Indexed Sums of Random Variables. 2014, S. 30-31
  6. A. N. Širjaev: Wahrscheinlichkeit. 1988, S. 491
  7. P. Gänssler, W. Stute: Wahrscheinlichkeitstheorie. 1977, S. 101
  8. Michel Ledoux, Michel Talagrand: Probability in Banach Spaces. 1991, S. 151-152