Algebra (Mengensystem)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

In der Mathematik ist (Mengen-)Algebra ein Grundbegriff der Maßtheorie. Er beschreibt ein nicht-leeres Mengensystem, das vereinigungs- und komplementstabil ist.

Felix Hausdorff nannte aufgrund einer entfernten Ähnlichkeit zur algebraischen Struktur eines Körpers in der Zahlentheorie eine Mengenalgebra „Körper“, in Analogie zu seiner Bezeichnung „Ring“ für einen Mengenverband.[1] Unter einem Ring versteht man heute in der Maßtheorie jedoch einen speziellen Mengenverband, außerdem unterscheidet sich dieser Begriff des Körpers wesentlich von dem eines Körpers im Sinne der Algebra. Manchmal findet man aber noch die Bezeichnung als Mengenkörper.

Auch das Teilgebiet der Mathematik, das vom Rechnen mit Mengen handelt, wird als Mengenalgebra bezeichnet. Ähnlich doppeldeutig ist auch der Begriff Algebra, der für ein Teilgebiet der Mathematik und auch für eine spezielle algebraische Struktur benutzt wird. Der hier verwendete Begriff der Mengenalgebra steht aber in einem engen Zusammenhang mit dem der booleschen Algebra, also einer anderen speziellen algebraischen Struktur.

Definition[Bearbeiten | Quelltext bearbeiten]

Sei eine beliebige Menge. Ein System von Teilmengen von heißt eine Mengenalgebra oder Algebra über , wenn folgende Eigenschaften erfüllt sind:

  1.   ( ist nicht leer).
  2.   (Stabilität/Abgeschlossenheit bezüglich Vereinigung).
  3.   (Stabilität/Abgeschlossenheit bezüglich Komplementbildung ).

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Für jede beliebige Menge ist die kleinste und die Potenzmenge die größte mögliche Mengenalgebra.
  • Jede σ-Algebra ist eine Mengenalgebra (aber nicht jede Mengenalgebra ist eine σ-Algebra).

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Jede Mengenalgebra über enthält immer und auch die leere Menge , denn enthält mindestens ein Element und damit sind sowie
  • Das 6-Tupel mit der Mengenalgebra ist eine boolesche Algebra im Sinne der Verbandstheorie, wobei für alle (Stabilität/Abgeschlossenheit bezüglich Durchschnitt). Die leere Menge entspricht dabei dem Nullelement und dem Einselement.
Ist umgekehrt ein Mengensystem, so dass eine boolesche Algebra ist, dann ist offensichtlich auch eine Mengenalgebra.
  • Aus der Vereinigungs- sowie Durchschnittsstabilität folgt jeweils induktiv, dass auch jede endliche Vereinigung und jeder endliche Durchschnitt von Elementen der Mengenalgebra in ihr enthalten ist, d. h. für alle gilt:
und
und
  • Die Spur einer Algebra ist wieder eine Algebra.

Äquivalente Definitionen[Bearbeiten | Quelltext bearbeiten]

Wenn ein System von Teilmengen von ist und wenn Mengen sind, dann sind wegen und folgende zwei Aussagen äquivalent:

  • und falls auch

Bezeichnet darüber hinaus die symmetrische Differenz von und so sind wegen und sowie äquivalent:

  • ist eine Mengenalgebra.
  • ist ein Mengenverband und es gilt: .
  • ist eine boolesche Algebra.
  • ist ein Mengenring und .
  • ist ein Mengenhalbring und es gilt: .
  • ist ein unitärer Ring im Sinne der Algebra mit Addition Multiplikation und Eins .
  • ist ein boolescher Ring.
  • mit der Skalarmultiplikation ist eine unitäre Algebra im Sinne der Algebra über dem Körper .
  • und es gilt: .
  • und es gilt: und .
  • und es gilt: und .

Operationen mit Algebren[Bearbeiten | Quelltext bearbeiten]

Produkte[Bearbeiten | Quelltext bearbeiten]

Sind und Mengenalgebren auf , so ist das Mengensystem

wieder eine Algebra. Diese ist auf der Grundmenge definiert und wird auch dazu verwendet, die Produkt-σ-Algebra zu definieren.

Schnitte[Bearbeiten | Quelltext bearbeiten]

Ist eine beliebige Indexmenge und sind Algebren, die alle auf derselben Grundmenge definiert sind, so ist der Schnitt aller dieser Algebren wieder eine Algebra :

.

Ist nun ein beliebiges Mengensystem, so lässt sich nun die von erzeugte Algebra definieren als

.

Sie ist per Definition die kleinste Algebra, die enthält.

Beziehung zu verwandten Strukturen[Bearbeiten | Quelltext bearbeiten]

Hierarchie der in der Maßtheorie verwendeten Mengensysteme
  • Die Mengenalgebren sind genau die Mengenringe, die die Grundmenge enthalten. Fasst man Mengenringe als Ring im Sinne der Algebra mit der symmetrischen Differenz als Addition und dem Durchschnitt als Multiplikation auf, so sind die Mengenalgebren gerade die unitären Ringe (d. h. mit Eins-Element) dieser Gestalt.
  • Da Mengenalgebren Ringe sind, sind sie automatisch auch Mengenverbände und Halbringe
  • Wenn eine Mengenalgebra sogar bezüglich der Vereinigung abzählbar unendlich vieler ihrer Elemente abgeschlossen ist, dann erhält man eine σ-(Mengen-)Algebra.
  • Die von einer Algebra erzeugte monotone Klasse entspricht der von der Algebra erzeugten -Algebra
  • Jede Algebra ist eine Semialgebra sowohl im engeren als auch im weiteren Sinn.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Jürgen Elstrodt: Maß- und Integrationstheorie. Springer, Berlin u. a. 1996, ISBN 3-540-15307-1, S. 12.