Algebra über einem Körper

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Eine Algebra über einem Körper , Algebra über oder -Algebra (früher auch als lineare Algebra bezeichnet)[1] ist ein Vektorraum über einem Körper , der um eine mit der Vektorraumstruktur verträgliche Multiplikation erweitert wurde.

Definition[Bearbeiten | Quelltext bearbeiten]

Eine Algebra über einem Körper oder kurz -Algebra ist ein -Vektorraum mit einer -bilinearen Verknüpfung

Multiplikation genannt, die durch oder symbolisiert wird. (Diese Verknüpfung ist unabhängig von der Multiplikation im Körper und derjenigen von Körperelementen mit Vektoren; die Verwendung desselben Symbols führt jedoch nicht zu Verwechslungen, da aus dem Kontext hervorgeht, welche Verknüpfung gemeint ist.)

Explizit bedeutet die Bilinearität, dass für alle Elemente und alle Skalare gilt:

Ist der zugrundeliegende Körper der Körper der reellen Zahlen , so nennt man die Algebra auch reelle Algebra.[2]

Verallgemeinerung[Bearbeiten | Quelltext bearbeiten]

Allgemeiner kann ein kommutativer Ring sein, dann ist „Vektorraum“ durch „Modul“ zu ersetzen, und man erhält eine Algebra über einem kommutativen Ring.

Unteralgebren und Ideale[Bearbeiten | Quelltext bearbeiten]

Eine Unteralgebra einer Algebra über einem Körper ist ein Unterraum von , der neben der Addition und der Multiplikation mit einem Skalar, also einem Element von , auch unter der in definierten Multiplikation abgeschlossen ist, d. h. . Dann ist eine eigenständige Algebra. Fasst man die komplexen Zahlen als reelle Algebra auf, so bilden zum Beispiel die reellen, nicht aber die imaginären Zahlen eine Unteralgebra der komplexen Zahlen.

Ist darüber hinaus

mit einem beliebigen Element von , so heißt ein linksseitiges Ideal von . Entsprechend heißt , falls

rechtsseitiges Ideal von ist. Ist beides der Fall oder gar kommutativ, so heißt einfach ein Ideal von . Falls die Algebra keine nicht-trivialen Ideale besitzt, heißt sie einfach.

Weitere Attribute und Beispiele[Bearbeiten | Quelltext bearbeiten]

Assoziative Algebren[Bearbeiten | Quelltext bearbeiten]

Eine assoziative Algebra ist eine -Algebra, in der für die Multiplikation das Assoziativgesetz gilt und die somit ein Ring ist. Beispiele:

  • Die Algebra der -Matrizen über einem Körper; die Multiplikation ist hierbei die Matrizenmultiplikation.
  • Die Inzidenzalgebra einer partiell geordneten Menge.
  • Algebren von linearen Operatoren von einem -Vektorraum in sich selbst; die Multiplikation ist hier die Hintereinanderausführung.
  • Die Gruppenalgebra zu einer Gruppe ; hierbei bilden die Gruppenelemente eine -Basis des -Vektorraums , und die Algebra-Multiplikation ist die bilineare Fortsetzung der Gruppenmultiplikation.
  • Die Algebra der Polynome mit Koeffizienten in in einer Unbekannten .
  • Die Algebra der Polynome mit Koeffizienten in in mehreren Unbekannten .
  • Eine Funktionenalgebra erhält man, indem man einen Funktionenraum von Funktionen von einer Menge in einen Körper mit folgender punktweisen Multiplikation versieht:

Funktionenalgebren sind assoziativ, weil die zugrunde liegende Körpermultiplikation assoziativ ist.

  • Eine Körpererweiterung von ist eine assoziative Algebra über . So ist z. B. eine -Algebra und kann als -Algebra oder als -Algebra betrachtet werden.

Kommutative Algebren[Bearbeiten | Quelltext bearbeiten]

Eine kommutative Algebra ist eine -Algebra, in der für die Multiplikation das Kommutativgesetz gilt. Beispiele:

  • Im mathematischen Teilgebiet Kommutative Algebra werden Algebren betrachtet, die assoziativ und kommutativ sind. Dazu gehören die oben genannten Polynomalgebren, die Funktionenalgebren und die Körpererweiterungen.
  • Genetische Algebren sind kommutative Algebren mit einigen zusätzlichen Eigenschaften, in denen das Assoziativgesetz im Allgemeinen nicht erfüllt ist.

Unitäre Algebren[Bearbeiten | Quelltext bearbeiten]

Eine unitäre Algebra ist eine Algebra mit einem neutralen Element der Multiplikation, dem Einselement (vgl. unitärer Ring). Beispiele:

  • Matrizenalgebren mit der Einheitsmatrix als Einselement.
  • Eine Algebra von Vektorraumendomorphismen mit der Identität als Einselement.
  • Einselement einer Inzidenzalgebra ist die Funktion
  • Jede Gruppenalgebra ist unitär: das Einselement der Gruppe ist auch Einselement der Algebra.
  • Das konstante Polynom 1 ist Einselement einer Polynomalgebra.
  • Der Körper K mit seiner Körpermultiplikation als Algebra-Multiplikation ist als -Algebra assoziativ, kommutativ und unitär.

Wenn das aus dem jeweiligen Kontext klar ist, werden die Eigenschaften „assoziativ“, „kommutativ“ und „unitär“ in der Regel nicht explizit genannt. Hat eine Algebra kein Einselement, so kann man eines adjungieren; jede Algebra ist also in einer unitären enthalten.

Nicht-assoziative Algebren[Bearbeiten | Quelltext bearbeiten]

Manche Autoren bezeichnen eine -Algebra als nicht-assoziativ, wenn das Assoziativgesetz nicht vorausgesetzt wird.[3] (Diese Begriffsbildung führt allerdings zu der etwas verwirrenden Konsequenz, dass insbesondere jede assoziative Algebra auch nicht-assoziativ ist.) Einige Beispiele für Algebren, die nicht notwendigerweise assoziativ sind:

  • Eine Divisionsalgebra ist eine Algebra, in der man „dividieren“ kann, d. h. in der alle Gleichungen und für stets eindeutig lösbar sind. Eine Divisionsalgebra muss weder kommutativ noch assoziativ noch unitär sein.
  • Eine Lie-Algebra ist eine Algebra, in der die beiden folgenden Bedingungen gelten (in Lie-Algebren wird das Produkt meist als geschrieben):
    • (Jacobi-Identität)
  • Der reelle Vektorraum mit dem Kreuzprodukt. Diese reelle Algebra ist insbesondere eine Lie-Algebra.
  • Eine Baric-Algebra ist eine Algebra , für die es einen nichttrivialen Algebrenhomomorphismus gibt.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. siehe z. B. bei Dickson (1905), http://www-groups.dcs.st-and.ac.uk/~history/Extras/Dickson_linear_algebras.html
  2. Reelle Algebra. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 978-3-8274-0439-8.
  3. siehe z. B. R. Lidl und J. Wiesenbauer, Ringtheorie und ihre Anwendungen, Wiesbaden 1980, ISBN 3-400-00371-9, Seite