Lithiumaluminiumhydrid

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Strukturformel
Struktur von Lithiumaluminiumhydrid
Allgemeines
Name Lithiumaluminiumhydrid
Andere Namen
  • Lithiumtetrahydridoaluminat
  • Lithiumalanat
Summenformel LiAlH4
CAS-Nummer 16853-85-3
PubChem 28112
Kurzbeschreibung

farbloses Pulver[1]

Eigenschaften
Molare Masse 37,95 g·mol−1
Aggregatzustand

fest

Dichte

0,92 g·cm−3 (20 °C)[2]

Schmelzpunkt

125 °C (Zersetzung)[2]

Löslichkeit
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [3]
02 – Leicht-/Hochentzündlich 05 – Ätzend

Gefahr

H- und P-Sätze H: 260​‐​314
P: 223​‐​231+232​‐​280​‐​305+351+338​‐​370+378​‐​422Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [4]
EU-Gefahrstoffkennzeichnung [5] aus EU-Verordnung (EG) 1272/2008 (CLP) [3]
Leichtentzündlich Ätzend
Leicht-
entzündlich
Ätzend
(F) (C)
R- und S-Sätze R: 15​‐​35
S: (1/2)​‐​7/8​‐​26​‐​36/37/39​‐​43​‐​45Vorlage:S-Sätze/Wartung/mehr als 5 Sätze
Thermodynamische Eigenschaften
ΔHf0

−116,3 kJ/mol[6]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Lithiumaluminiumhydrid (LAH) ist ein anorganisches Reduktionsmittel der Summenformel LiAlH4.

Synthese[Bearbeiten]

Im Labor wird Lithiumaluminiumhydrid durch Suspendieren von Lithiumhydrid und Aluminiumchlorid in Diethylether gewonnen.[7] Nach Abfiltrieren des Lithiumchlorids und Entfernen des Ethers bleibt Lithiumaluminiumhydrid zurück.

\mathrm{4\ LiH + \ AlCl_3 \longrightarrow \ LiAlH_4 + 3\ LiCl}
Synthese von Lithiumaluminiumhydrid aus Lithiumhydrid und Aluminiumchlorid

Technisch wird es außerdem auch durch Umsetzen von Natriumaluminiumhydrid mit Lithiumchlorid hergestellt. Das benötigte Natriumaluminiumhydrid kann aus den Elementen Natrium, Aluminium und Wasserstoff bei erhöhter Temperatur unter Druck erhalten werden.[8]

\mathrm{Na\ +\ Al\ +\ 2\ H_2\longrightarrow\ NaAlH_4}
\mathrm{NaAlH_4 + \ LiCl \longrightarrow \ LiAlH_4 + NaCl}

Reaktionsverhalten[Bearbeiten]

Lithiumaluminiumhydrid ist ein starkes Reduktionsmittel der organisch-synthetischen Chemie und reduziert selektiv fast alle Kohlenstoff-Heteroatom-Doppel- und -Dreifachbindungen wie beispielsweise Carbonyle oder Nitrile, es schont dagegen C-C-Doppelbindungen und C-C-Dreifachbindungen (Alkene/Alkine), es sei denn, diese sind konjugiert zu bestimmten aktivierenden Gruppen; so wird z.B. die Gruppierung Phenyl-CH=CH-NO2 zu 2-Phenylethylamin reduziert. Es reduziert Nitroverbindungen, Amide[9][10], Azide oder Oxime[11] zu primären Aminen, Carbonylverbindungen zu Alkoholen[12], Carbonsäuren[13], Ester[14][15], Säurechloride und Säureanhydride zu primären Alkoholen. Halogenalkane werden zu Alkanen reduziert.

Reduktionen mit Lithiumaluminiumhydrid


Mit Wasser reagiert es heftig und stark exotherm unter Bildung von Lithiumhydroxid, Aluminiumhydroxid und Wasserstoff.

\mathrm{ LiAlH_4 + 4 \ H_2O \rightarrow \ LiOH + \ Al(OH)_3 + 4 \ H_2}

Bei Raumtemperatur ist Lithiumaluminiumhydrid metastabil. Es zersetzt sich langsam zu Lithiumhexahydridoaluminat Li3AlH6 und Lithiumhydrid, was durch Katalysatoren und Erhitzung beschleunigt werden kann.

Die Zersetzung erfolgt bei langsamer Erwärmung in mehreren Schritten.

\mathrm{3 \ LiAlH_4 \rightarrow Li_3AlH_6 + 2 \ Al + 3 \ H_2}
\mathrm{ 2 \ Li_3AlH_6 \rightarrow 6 \ LiH + 2 \ Al + 3 \ H_2}
\mathrm{ 2 \ LiH + 2 \ Al \rightarrow 2 \ LiAl + H_2}

Erst erfolgt in der Regel das Schmelzen von Lithiumaluminiumhydrid unmittelbar gefolgt von der Zersetzung zu Li3AlH6. Bei über 200 °C zerfällt dieses wiederum in Aluminium und Lithiumhydrid, die bei 400 °C zu LiAl reagieren.

Verwendung[Bearbeiten]

Lithiumaluminiumhydrid wird, wie auch Natriumborhydrid, in der Organischen Chemie als Reduktionsmittel benutzt. Diese Verwendung als Reduktionsmittel ist ein Beispiel für eine Synthesemethode, die mit geringer Atomökonomie abläuft. In Verbindung mit chiralen Reagenzien, z.B. TADDOL, ist es möglich enantioselektive Reduktionen von Ketonen vorzunehmen.
Eine weitere Anwendung besteht in der Synthese von Natrium- und Kaliumaluminiumhydrid, die durch Einsatz der entsprechenden Hydride erhalten werden können.

\mathrm{LiAlH_4 + \ KH \longrightarrow \ KAlH_4 + \ LiH}

Einzelnachweise[Bearbeiten]

  1. a b c  Thieme Chemistry (Hrsg.): RÖMPP Online – Version 3.5. Georg Thieme Verlag KG, Stuttgart 2009.
  2. a b c Datenblatt Lithiumaluminiumhydrid bei Merck, abgerufen am 19. Januar 2011.
  3. a b Eintrag aus der CLP-Verordnung zu CAS-Nr. 16853-85-3 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich)
  4. Eintrag zu CAS-Nr. 16853-85-3 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 7. April 2011 (JavaScript erforderlich).
  5. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  6. David R. Lide (Ed.): CRC Handbook of Chemistry and Physics. 90th Edition (Internet Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-5.
  7. A. E. Finholt, A. C. Bond, H. I. Schlesinger: Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry, in: J. Am. Chem. Soc. 1947, 69, 1199–1203.
  8. A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie 2007, 102. Auflage, de Gruyter. ISBN 978-3-11-017770-1.
  9. D. Seebach, H.-O. Kalinowski, W. Langer, G. Crass, E.-M. Wilka, Organic Syntheses 1983, 61, 24.
  10. C. H. Park, H. E. Simmons, Organic Syntheses 1974, 54, 88.
  11. Y. K. Chen, S.-J. Jeon, P. J. Walsh, W. A. Nugent, Organic Syntheses 2005, 82, 87.
  12. J. P. Barnier, J. Champion, J. M. Conia, Organic Syntheses 1981, 60, 25.
  13. B. Koppenhöfer, V. Schurig, Organic Syntheses 1988, 66, 160.
  14. M. T. Reetz, M. W. Drewes, R. Schwickardi, Organic Syntheses 1999, 76, 110.
  15. R. Oi, K. B. Sharpless, Organic Syntheses 1996, 73, 1.

Literatur[Bearbeiten]

Weblinks[Bearbeiten]