Nukleosid-modifizierte mRNA

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 5. Dezember 2020 um 07:16 Uhr durch (Diskussion | Beiträge) (→‎Einsatzgebiete: Form). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Nukleosid-modifizierte Messenger-RNA (modRNA) ist eine synthetische, chemisch modifizierte Boten-Ribonukleinsäure (mRNA), in der einzelne Nukleoside durch andere natürliche modifizierte Nukleoside oder durch synthetische Nukleosid-Analoga ersetzt sind.[1] modRNA wird experimentell oder therapeutisch eingesetzt, um in bestimmten Zellen die Produktion eines gewünschten Proteins zu induzieren.

Voraussetzungen

In einer Zelle entsteht mRNA dadurch, dass ein Ribonukleinsäure (RNA)-Strang nach einer Desoxyribonukleinsäure (DNA)-Vorlage synthetisiert wird, wobei der codogene Strangabschnitt als Matrize dient. Dieser Vorgang wird als Transkription bezeichnet. Die mRNA wird dann an Ribosomen abgelesen und dient dabei ihrerseits als Bauplan für die Synthese von Proteinen, indem sie deren Aminosäuresequenz vorgibt. Den zuletzt beschriebenen Vorgang der Proteinbiosynthese bezeichnet man als Translation.

Prinzip der Nukleosidmodifikation

Wenn man Zellen veranlassen will, Proteine zu synthetisieren, die sie normalerweise nicht herstellen, kann man modRNA einsetzen, in deren Nukleotidsequenz die Aminosäuresequenz dieser Proteine codiert ist. Die in vitro synthetisierte mRNA muss dann in den Organismus eingebracht, zum Beispiel injiziert, in die Zielzellen aufgenommen und dort abgelesen werden. Auf die Weise erfolgt also eine Translation ohne vorherige Transkription. Man schmuggelt sozusagen in die Zellen einen Bauplan für fremde Proteine ein. Um dieses Ziel zu erreichen, muss man aber Systeme umgehen, die im menschlichen Organismus dazu da sind, das Eindringen und die Translation fremder mRNA zu verhindern. Zum einen gibt es Enzyme (Ribonukleasen), die „normale“, also nicht modifizierte mRNA abbauen. Zum andern gibt es auch intrazelluläre Barrieren gegen fremde mRNA. Wenn Einzelstrang-RNA (ssRNA) über die Zellmembran in Endosomen aufgenommen wird, wird sie von den Toll-like-Rezeptoren 7 und 8, die zum angeborenen Immunsystem (englisch: innate immunity) gehören, erkannt. Dies führt letztlich dazu, dass die Proteinsynthese in der Zelle abgeschaltet wird, dass Interferone und Zytokine ausgeschüttet werden und es über die Aktivierung der Transkriptionsfaktoren TNF-alpha und AP-1 zum programmierten Zelltod (Apoptose) kommen kann. Dies kann man umgehen, indem man das System zur in-vitro-Produktion der mRNA so modifiziert, dass statt des physiologischen Nukleosids Uridin das ähnliche (auch natürlich vorkommende) Pseudouridin (Ψ) oder N1-Methyl-Pseudouridin (m1Ψ) oder statt Cytosin das 5-Methyl-Cytosin eingebaut werden. N1-Methyl-Pseudouridin und 5-Methyl-Cytosin kommen natürlicherweise nicht vor. Wenn eine mRNA ein oder zwei dieser abgeänderten Nukleoside enthält, führt das zu einer Änderung der Sekundärstruktur, was auf der einen Seite verhindert, dass sie vom angeborenen Immunsystem erkannt wird, zum anderen aber dennoch eine effektive Translation zu einem Protein erlaubt.

Bedeutung untranslatierter Regionen

Eine normale mRNA beginnt und endet mit Abschnitten, die nicht für Aminosäuren des eigentlichen Proteins codieren. Diese Sequenzen am 3′- und 5′-Ende eines mRNA-Strangs werden als untranslatierte Regionen (UTRs) bezeichnet. Die beiden UTRs an ihren Strangenden sind wesentlich für die Stabilität einer mRNA und ebenso einer modRNA wie auch für die Effizienz der Translation, also für die Menge des produzierten Proteins. Durch die Auswahl geeigneter UTRs bei der Synthese einer modRNA kann man die Produktion des Zielproteins in den Zielzellen optimieren.[2]

Hindernisse, Verwendung von Nanopartikeln

Wenn man modRNA in bestimmte Zielzellen einschleusen will, steht man vor verschiedenen Schwierigkeiten. Zum einen muss man die modRNA vor Ribonukleasen schützen. Das kann zum Beispiel dadurch geschehen, dass man sie in Lipidnanopartikel (Solid lipid nanoparticles) einpackt. Eine solche „Verpackung“ kann auch dazu beitragen, dass die modRNA in die Zielzellen aufgenommen wird. Dies ist zum Beispiel nützlich beim Einsatz in Impfstoffen, da Nanopartikel von dendritischen Zellen und Makrophagen aufgenommen werden, die beide eine wichtige Rolle in der Aktivierung des Immunsystems spielen[3].

Weiterhin kann es wünschenswert sein, dass die angewendete modRNA spezifisch in bestimmte Körperzellen eingebracht wird. Dies ist zum Beispiel der Fall, wenn man Herzmuskelzellen zur Vermehrung anregen will. Dann kann die verpackte modRNA zum Beispiel direkt intraarteriell in die Koronararterien injiziert werden.

Risiken

Wenn die modRNA nicht in die Zielzellen, sondern in andere Zellen gelangt, können unerwünschte Effekte auftreten. Wenn zum Beispiel das codierte Protein eigentlich Herzmuskelzellen zur Zellvermehrung anregen soll, aber fälschlicherweise in anderen Zellen produziert wird, könnten so Wucherungen entstehen. Allerdings wird ein solcher negativer Effekt zeitlich dadurch limitiert, dass die modRNA trotz ihrer im Vergleich zu normaler mRNA erhöhten Stabilität letztlich doch abgebaut wird, ebenfalls die von ihr codierten Proteine.

Zum anderen wurde eingewandt, dass Veränderungen am Genom der Zellen, also Mutationen, ausgelöst werden könnten mit Folgen bis hin zur Krebsentstehung. Dabei ist nun zunächst zu bedenken, dass die Erbinformation als DNA (nicht als RNA) im Zellkern vorliegt, und modRNA nicht in den Zellkern gelangt. Darüber hinaus gibt es im menschlichen Körper physiologischerweise keine reverse Transkriptase, also kein Enzym, das mRNA in DNA umschreiben (transkribieren) kann. Hier wiederum wird eingewandt, dass es beim Menschen Infektionen mit Viren gibt, die reverse Transkriptasen bilden (zum Beispiel HIV), und dass eben diese reversen Transkriptasen zu einer reversen Transkription der modRNA führen könnten. Allerdings sind diese reversen Transkriptasen von Viren hochspezifisch und transkribieren nur die viruseigene RNA, sodass dieses Problem wahrscheinlich vernachlässigt werden kann.[4][5][6] Allerdings gibt es über den Einsatz von modRNA am Menschen erst seit kurzem erste Erfahrungen (SARS-CoV-2-Impfstoffe auf modRNA-Basis).

Einsatzgebiete

Das aktuell wichtigste Einsatzgebiet von modRNA ist die Produktion von Impfstoffen gegen SARS-CoV-2.[7] Die Vakzinen, die von der Kooperation der Firmen BionNTech SE/Pfizer Inc./Fosun International Limited[8] sowie von den Firmen Curevac[9] und Moderna[10] wie auch von anderen Unternehmen[11] als Schutz vor einer COVID-19-Erkrankung entwickelt werden, arbeiten mit einer modRNA-Technologie.

Weitere Möglichkeiten einer Verwendung von modRNA sind die Regeneration von geschädigtem Herzmuskelgewebe[12][13] und die Krebstherapie.[14]

Literatur

  • Kenneth R. Chien, Lior Zangi, Kathy O. Lui: Synthetic Chemically Modified mRNA (modRNA): Toward a New Technology Platform for Cardiovascular Biology and Medicine. In: Cold Spring Harbor Perspectives in Medicine. Band 5, Nr. 1, 1. Januar 2015, ISSN 2157-1422, S. a014035, doi:10.1101/cshperspect.a014035, PMID 25301935, PMC 4292072 (freier Volltext) – (cshlp.org [abgerufen am 28. November 2020]).

Einzelnachweise

  1. Kenneth R. Chien, Lior Zangi, Kathy O. Lui: Synthetic Chemically Modified mRNA (modRNA): Toward a New Technology Platform for Cardiovascular Biology and Medicine. In: Cold Spring Harbor Perspectives in Medicine. Band 5, Nr. 1, 1. Januar 2015, ISSN 2157-1422, S. a014035, doi:10.1101/cshperspect.a014035, PMID 25301935, PMC 4292072 (freier Volltext) – (cshlp.org [abgerufen am 28. November 2020]).
  2. Alexandra G. Orlandini von Niessen, Marco A. Poleganov, Corina Rechner, Arianne Plaschke, Lena M. Kranz: Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. In: Molecular Therapy. Band 27, Nr. 4, 10. April 2019, ISSN 1525-0016, S. 824–836, doi:10.1016/j.ymthe.2018.12.011, PMID 30638957, PMC 6453560 (freier Volltext) – (cell.com [abgerufen am 28. November 2020]).
  3. Nanoparticle vaccines. In: Vaccine. Band 32, Nr. 3, 9. Januar 2014, ISSN 0264-410X, S. 327–337, doi:10.1016/j.vaccine.2013.11.069 (sciencedirect.com [abgerufen am 28. November 2020]).
  4. Uli Blumenthal, Michael Lange: Corona-Vakzine von Biontech/Pfizer und Moderna: Wie mRNA-Impfstoffe funktionieren und wirken (Interview mit Leif Erik Sander). In: Deutschlandfunk. 22. November 2020, abgerufen am 2. Dezember 2020.
  5. Fee Anabelle Riebeling: Corona-Faktencheck: 7 Dinge, die Impfskeptikern Bauchweh machen. In: 20 Minuten. 18. November 2020, abgerufen am 28. November 2020.
  6. Kristina Kreisel: „Die Corona-Erklärer“: Corona-Impfstoffe verändern die DNA? Das sagen die Experten zur Aufreger-Theorie. In: Focus Online. 19. November 2020, abgerufen am 28. November 2020.
  7. Christina Hohmann-Jeddi: Hoffnungsträger BNT162b2: Wie funktionieren mRNA-Impfstoffe? In: Pharmazeutische Zeitung. 10. November 2020, abgerufen am 28. November 2020.
  8. Annette B. Vogel, Isis Kanevsky, Ye Che, Kena A. Swanson, Alexander Muik: A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates. In: bioRxiv. 8. September 2020, S. 2020.09.08.280818, doi:10.1101/2020.09.08.280818 (biorxiv.org [abgerufen am 28. November 2020]).
  9. COVID-19: Über CureVacs Entwicklung eines mRNA-basierten Impfstoffs. In: curevac.com. CureVac, 28. November 2020, abgerufen am 28. November 2020.
  10. Moderna's Pipeline. In: modernatx.com. Moderna, abgerufen am 28. November 2020 (englisch).
  11. Florian Krammer: SARS-CoV-2 vaccines in development. In: Nature. Band 586, Nr. 7830, Oktober 2020, ISSN 1476-4687, S. 516–527, doi:10.1038/s41586-020-2798-3 (nature.com [abgerufen am 28. November 2020]).
  12. Keerat Kaur, Lior Zangi: Modified mRNA as a Therapeutic Tool for the Heart. In: Cardiovascular Drugs and Therapy. Band 34, Nr. 6, 1. Dezember 2020, ISSN 1573-7241, S. 871–880, doi:10.1007/s10557-020-07051-4, PMID 32822006, PMC 7441140 (freier Volltext).
  13. Lior Zangi, Kathy O. Lui, Alexander von Gise, Qing Ma, Wataru Ebina: Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. In: Nature Biotechnology. Band 31, Nr. 10, Oktober 2013, ISSN 1546-1696, S. 898–907, doi:10.1038/nbt.2682, PMID 24013197, PMC 4058317 (freier Volltext) – (nature.com [abgerufen am 28. November 2020]).
  14. Ugur Sahin, Özlem Türeci: Personalized vaccines for cancer immunotherapy. In: Science. Band 359, Nr. 6382, 23. März 2018, ISSN 0036-8075, S. 1355–1360, doi:10.1126/science.aar7112 (sciencemag.org [abgerufen am 28. November 2020]).