Quantengravitation

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Quantengravitation ist eine sich derzeit noch in Entwicklung befindliche Theorie, welche die Quantenphysik und die allgemeine Relativitätstheorie, also die beiden großen physikalischen Theorien des 20. Jahrhunderts, vereinigen soll. Während die allgemeine Relativitätstheorie nur eine der vier Elementarkräfte des Universums beschreibt, nämlich die Gravitation, behandelt die Quantentheorie die anderen drei Elementarkräfte (elektromagnetische Wechselwirkung, schwache Wechselwirkung und starke Wechselwirkung). Die Vereinigung dieser beiden Theorien ist unter anderem wegen ihrer Überschneidungen, aber auch wegen abweichender wissenschaftsphilosophischer Konsequenzen notwendig.

Hintergründe[Bearbeiten]

Generell beschreibt die allgemeine Relativitätstheorie den Aufbau des Universums im Großen und ist bei großen Massen und Beschleunigungen praktikabel. Die Quantentheorie hingegen beschreibt die Wechselwirkung zwischen kleinsten Teilchen in kleinen Raumgebieten. Obwohl die Gravitation die schwächste der Elementarkräfte ist, bestimmt sie das Weltbild der Physik: Sie ist die einzige der vier Elementarkräfte, die, nach heutiger Kenntnis, ausschließlich anziehend wirkt, da es nur eine Gravitationsladung (die Masse) gibt, und sich somit nicht entgegengesetzte Ladungen gegenseitig aufheben können. Die anderen Elementarkräfte hingegen sind nur für mikroskopische Prozesse von Bedeutung - mit Ausnahme der elektromagnetischen Wechselwirkung, die durchaus makroskopische und im Fall von interstellarem Plasma oder den Magnetfeldern von beispielsweise Sonne und Erde auch kosmische Maßstäbe erreicht. Überschneidungen beider Theorien treten in einigen Extremfällen auf:

  • Der Urknall stellt im Modell der allgemeinen Relativitätstheorie ein Problem dar, da hier die Krümmung der Raumzeit unendlich wird (sog. Singularität), womit die Gesetze der allgemeinen Relativitätstheorie außer Kraft gesetzt werden, und Dichte sowie Temperatur extreme Werte annehmen.
  • Bei schwarzen Löchern, welche durch ihre enorme Masse einhergehend mit ihrer geringen Größe die Raumzeit ebenfalls bis zur Singularität krümmen.

Einige Physiker verbinden mit der noch zu formulierenden Vereinigung der Gravitation mit den anderen Elementarkräften die Hoffnung, dass in einer solchen Theorie keine formal unendlichen Terme mehr auftreten, und sich Extremfälle, in denen alle Elementarkräfte gleichermaßen berücksichtigt werden müssen, dann berechnen lassen. Zusätzlich gilt die Quantengravitation als möglicher Kandidat einer TOE (Theory Of Everything).

Probleme[Bearbeiten]

Bisher widersetzt sich die Gravitation allerdings beharrlich den Versuchen der Physiker, sie in das Quantenmodell einzufügen. Dieses beruht darauf, dass alle Kräfte in Elementarportionen, die Quanten, aufgeteilt werden. Die so zerlegten Kräfte lassen sich in der Quantentheorie und nur dort exakt berechnen und erklären. Die Gravitation allerdings lässt sich nicht so einfach zerlegen und so werden heute Theorien aufgestellt, die dies ermöglichen sollen.

Die wesentliche Problematik bei der Formulierung einer Theorie der Quantengravitation besteht darin, dass etablierte Methoden, die von anderen Quantenfeldtheorien bekannt sind, sich nicht unmittelbar auf die Allgemeine Relativitätstheorie übertragen lassen. Insbesondere scheitert die störungstheoretische Quantisierung und Renormierung der Gravitation. Versucht man, die Theorie mittels Gravitonen und deren Wechselwirkungen (mittels Feynmandiagrammen) zu konstruieren, so findet man die aus anderen Quantenfeldtheorien bekannten Unendlichkeiten; die Eliminierung dieser Unendlichkeiten ist jedoch mit den etablierten Methoden nicht möglich. Für eine Theorie der Quantengravitation müssen also zwingend neue Methoden zur Quantisierung bzw. Renormierung konstruiert werden.

Kandidaten für eine Theorie der Quantengravitation[Bearbeiten]

Ein Anwärter für die Quantengravitation ist die Stringtheorie, in der alle Elementarteilchen durch eindimensionale Strings repräsentiert werden. Allerdings lässt sich diese Theorie nach bisherigem Kenntnisstand nur in einem 10-, 11- oder 26-dimensionalen Universum formulieren. Außerdem ist unklar, ob und in welcher Weise sie das bekannte Standardmodell der Elementarteilchen reproduziert.

Eine Alternative ist die Schleifenquantengravitation (auch Loop-Quantengravitation LQG), in welcher auch Raum und Zeit gequantelt sind. Im Zuge der Schleifenquantengravitation wird die Allgemeine Relativitätstheorie zunächst als Eichtheorie umformuliert, sowie eine modifizierte Quantisierungsvorschrift angewandt. Es ist heute (2015) noch nicht endgültig geklärt, ob die so definierte Theorie in sich konsistent ist und ob sie im klassischen Grenzfall die Ergebnisse der Allgemeinen Relativitätstheorie reproduziert.

Eine weitere Alternative ist der Ansatz der sogenannten asymptotischen Sicherheit, einer Verallgemeinerung der asymptotischen Freiheit, der eine nicht-störungstheoretische Quantisierung und Renormierung der Allgemeinen Relativitätstheorie zum Ziel hat. Dabei werden die oben genannten Probleme der störungstheoretischen Quantisierung vermieden; die Kopplungskonstanten sowie physikalischen Größen wie Streuamplituden bleiben endlich.

Die kausale dynamische Triangulation stellt einen Ansatz dar, die Gravitation in einer diskretisierten Variante vergleichbar der Gittereichtheorie mittels Pfadintegralquantisierung und Monte-Carlo-Simulation zu lösen. Diese Formulierung erlaubt die Berechnung verschiedener "Phasen" der Quantengravitation; im langreichweitigen Limes resultiert automatisch ein de Sitter-Universum, d.h. die kausale dynamische Triangulation reproduziert möglicherweise ohne zusätzliche Annahmen ein Universum mit nicht-verschwindender kosmologischer Konstante und beschleunigter Expansion.

Die Supergravitation bezeichnet eine Klasse von Feldtheorien, die aus Erweiterungen der Allgemeinen Relativitätstheorie um supersymmetrische Felder, insbs. um das hypothetische Gravitino als Spin-3/2-Partner des (ebenfalls hypothetischen) Spin-2-Gravitons, resultieren. Verschiedene Klassen der Supergravitation ergeben sich als Grenzfälle von Superstringtheorien im Limes verschwindender Stringlänge. Die Idee hinter der Supergravitation besteht darin, dass sie sowohl das Standardmodell der Elementarteilchen umfassen als auch das Renormierungsproblem lösen soll. Letzteres konnte bis heute (2015) nicht eindeutig bewiesen werden.

Dies sind nur einige Theorien, daneben gibt es noch eine ganze Reihe anderer Erklärungsmodelle.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

Weblinks[Bearbeiten]