σ-Endlichkeit

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Sigma-endliches Maß)
Wechseln zu: Navigation, Suche

Der Begriff der -Endlichkeit (auch -Finitheit) wird in der mathematischen Maßtheorie verwendet und liefert eine Abstufung von (messbaren) Mengen von unendlichem Maß in -endliche und nicht -endliche Mengen. Er wird aus ähnlichen Gründen eingeführt wie der Begriff der Abzählbarkeit bezüglich der Anzahl von Elementen einer Menge. Allgemein ist die -Endlichkeit eine Eigenschaft von Mengenfunktionen in Verbindung mit einem Mengensystem. Oftmals wird aber auf die Angabe des Mengensystems verzichtet, wenn klar ist, um welches es sich handelt.

Definition für Maße[Bearbeiten | Quelltext bearbeiten]

Gegeben sei ein Messraum . Dann heißt ein Maß ein -endliches Maß, wenn es eine der drei folgenden äquivanenten Bedingungen erfüllt:

  1. Es existieren höchstens abzählbar viele Mengen aus , für die für alle gilt und die überdecken. Es gilt also
    .
  2. Es existieren höchstens abzählbar viele disjunkte Mengen aus , für die für alle gilt und die überdecken. Es gilt also
    .
  3. Es existiert eine strikt positive (d.h. für alle ) messbare Funktion , so dass
    .

Der Maßraum wird dann auch als -endlicher Maßraum bezeichnet. Allgemeiner wird ein signiertes Maß -endlich genannt, wenn seine Variation -endlich ist.

Beispiele[Bearbeiten | Quelltext bearbeiten]

Das Lebesgue-Maß auf den reellen Zahlen, versehen mit der Borelschen σ-Algebra, ist nicht endlich, aber -endlich. Denn betrachtet man die Mengen

,

so ist und

.

Somit erfüllt das Lebesgue-Maß das erste Kriterium in der obigen Konstruktion. Eine disjunkte Überdeckung mit Mengen endlichen Maßes wie im zweiten Punkt der Definition liefern beispielsweise die Mengen

,

wobei ist. Dann ist und es gilt wieder

.

Eine strikt positive Funktion mit endlichem Integral wie im dritten Punkt der Definition gefordert erhält man beispielsweise durch

.

Hierbei ist die Indikatorfunktion auf der Menge .

Zu beachten ist, dass -Endlichkeit immer eine Eigenschaft eines Maßes in Kombination mit einem Messraum ist. So ist das Zählmaß auf einer Menge , versehen mit der Potenzmenge als -Algebra endlich, wenn endlich ist und genau dann -endlich, wenn höchstens abzählbar ist.

Anwendung[Bearbeiten | Quelltext bearbeiten]

  • Nicht endliche Maße können pathologische Eigenschaften aufweisen, jedoch sind viele der häufig betrachteten Maße nicht endlich. Die Klasse der -endlichen Maße teilt mit den endlichen Maßen einige angenehme Eigenschaften, -Endlichkeit kann in dieser Hinsicht mit der Separabilität von topologischen Räumen verglichen werden. Einige Sätze der Analysis, wie der Satz von Radon-Nikodým und der Satz von Fubini, gelten zum Beispiel nicht mehr für nicht -endliche Maße (mitunter ist jedoch eine Übertragung auf allgemeinere Fälle möglich, indem man den Satz für alle -endlichen Teilräume anwendet).
  • Das Birkhoff-Integral für Banachraum-wertige Funktionen wird mit Hilfe von -endlichen Maßen definiert.

Äquivalenz zu Wahrscheinlichkeitsmaßen[Bearbeiten | Quelltext bearbeiten]

Zwei Maße und auf einem gemeinsamen Messraum heißen äquivalent, wenn sie dieselben Nullmengen besitzen. Das heißt, es gilt sowohl als auch , sie sind gegenseitig absolut stetig. Hierdurch ist tatsächlich eine Äquivalenzrelation auf Maßen erklärt. Wir nehmen im Weiteren an, sei nicht das Nullmaß.

Viele der Anwendungen -endlicher Maße ergeben sich nun aus dem folgenden Satz:

Jedes -endliche Maß ist äquivalent zu einem Wahrscheinlichkeitsmaß .

Die Bedeutung des Satzes liegt in der Äquivalenz zu einem endlichen Maß, selbst dann, wenn unendlich ist. Insbesondere gibt es stets eine -integrierbare Funktion , so dass für alle gilt.

Definition für Mengenfunktionen[Bearbeiten | Quelltext bearbeiten]

Definition[Bearbeiten | Quelltext bearbeiten]

Gegeben sei ein Mengensystem auf der Grundmenge , also . Sei

eine positive Mengenfunktion. Dann heißt die Mengenfunktion -endlich, wenn es eine abzählbare Folge von Mengen aus gibt, so dass

gilt und

gilt. Insbesondere muss die Menge aber nicht im Mengensystem enthalten sein.

Bemerkung[Bearbeiten | Quelltext bearbeiten]

Mit der obigen Definition lässt sich die -Endlichkeit auf allgemeinere Mengenfunktionen ausweiten. Eine der wichtigsten Anwendungen dieses Begriffes ist der Maßerweiterungssatz von Carathéodory, nach dem jedes -endliche Prämaß auf einem Halbring eindeutig zu einem Maß auf der erzeugten -Algebra fortsetzbar ist. Ohne die -Endlichkeit folgt hier nicht die Eindeutigkeit.

Verwandte Begriffe[Bearbeiten | Quelltext bearbeiten]

Ein dem -endlichen Maß verwandter Begriff ist der eines moderaten Maßes. Hierbei handelt es sich um ein Borel-Maß, für das eine abzählbare Überdeckung der Grundmenge mit offenen Mengen endlichen Maßes existiert.

Zudem existiert ein Begriff der s-Finitheit. Man nennt ein Maß s-finit, falls es die abzählbare Summe von endlichen Maßen ist. Jedes σ-endliche Maß ist immer s-finit, aber nicht jedes s-finite Maß ist σ-endlich.

Literatur[Bearbeiten | Quelltext bearbeiten]